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ABSTRACT 

(English) 

Microsoft's .NET platform is an innovative and promising technology to achieve true 

interoperability between programming languages, and true portability over different 

hardware and operating system platforms. A .NET embedded processor has been 

designed on FPGAs that improves the performance of the .NET Common Language 

Runtime (CLR). The flexibility of FPGAs has been exploited to accelerate programs 

targeted to run on .NET virtual machine by considering a constricted set of the .NET 

instruction set architecture.  The Turing complete set of instructions has been 

implemented in hardware. A software-hardware co-design approach has been adopted 

to implement the design. The conclusion is that the performance of a hardware-

software co-designed methodology is better than a purely software approach. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION TO VIRTUAL MACHINES 

 

The field of virtual machines (VM) and language-independent and platform-

independent execution environments has always fascinated language designers and 

implementers for a long time. Such implementations have a lot of advantages over the 

native compilers strategy, the main objective of adopting such an approach being 

portability [1].  

Portability is achieved by having the high level code translated to an intermediate 

form, which a system, usually called the Virtual Machine (VM), translates to the native 

code of the target architecture. The virtual machine is a software implementation that lies 

between the application and the operating system. Or in other words, the VM can be 

thought of as a program that can run other programs. The intermediate form acts as a 

means of communication between the high level front end and the low level back end. 

One of the ways of realizing such a virtual Machine system, and the widely adopted one, 

is by modeling the VM as a stack. The reason for adopting a stack-based architecture is 

that, any virtual machine, which aims to achieve portability across platforms, cannot 

make assumptions on the underlying architecture. A stack, on the other hand can offer 

higher level abstractions and abstract actions can be specified on a stack (push, pop, add-

top-two etc.). Thus, it becomes desirable to model VMs as abstract stack machines. The 

next section gives an introduction to the .NET environment, which has a VM as one of its 

components. 

 

1.2 INTRODUCTION TO .NET 

 

The name “.NET” is misleading. The name likely comes from Microsoft’s 

original idea of web services. However, .NET is much more than that. It is a framework 

that includes an execution engine (i.e., a virtual machine) to allow applications to be 

platform-independent (like Java). Unlike Java, it is language independent. Programs can 



 

be written in any .NET-supported language. The Common Language Environment (CLR) 

is the run-time environment of the .NET framework. It manages the execution of code 

and provides services that make the development process easier. The intermediate code 

form of the .NET system is called Common Intermediate Language (CIL) or the 

Microsoft Intermediate language (MSIL). A detailed review of the .NET architecture has 

been provided in Appendix A5.  

 

1.3 .NET in EMBEDDED SYSTEMS 

 

An exponential growth as been witnessed in the field of embedded systems, 

spawning the growth of embedded devices on a large scale. With the Internet boom, more 

and more embedded devices are being designed through which Internet access is 

possible. As this growth continues the devices are becoming more intelligent and 

complex than ever. So there is a significant increase in the amount of software that has to 

be written for such devices. Hence from a programmer’s point of view it would be 

helpful if they can have a level of abstraction between the underlying hardware and the 

software, which is to be written so that they can concentrate more on the code rather than 

focusing on the low-level details of the embedded device. .NET provides this abstraction 

by helping a programmer concentrate on the implementation rather than focusing on the 

low level hardware details. Thus .NET technology may truly enable the embedded system 

revolution by providing a flexible and common platform.  

But .NET in its present form cannot be directly used for programming embedded 

devices due to several reasons. One among them is that .NET programs generally run in 

an interpreted environment where the underlying Virtual Machine (VM), the Common 

Language Runtime (CLR) interprets each .NET instruction. This means that the VM 

translates the program into machine instructions that the processor in the device can 

execute. But such an interpreted execution takes time to complete. But time for execution 

is directly proportional to power consumption in an embedded system. So we cannot 

prefer such a purely interpreted embedded system since it consumes more power. So it is 

imperative for the programmer to write programs that are power efficient, i.e. they must 

consume less time to get executed. Another reason why .NET in the present form cannot 



 

be used on embedded devices is that the size of the underlying VM (the CLR) is too large 

to be loaded into embedded devices, as memory is a constraint in these devices.  

 

1.4 PROPOSED SCHEME 

 

The very common solution to build any general VM is to have it as an interpreter 

and/or a JIT compiler or an AOT compiler. This kind of a software solution is relatively 

easier to build and cost effective, but it compromises on the performance. Moreover it 

also suffers from sequential execution. Pure hardware implementations are possible but 

the price they demand is flexibility. Moreover, complexity and cost are high for such an 

approach. 

The objective is to exploit the advantages of both these approaches by employing 

both of them. In other words, a co-design sort of an approach to achieve a better 

negotiation between cost and performance is proposed. Also, with this paradigm lies 

flexibility too. Using FPGA provides a development environment for easily shifting the 

partitioning between hardware and software to arrive at an optimized solution in an 

iterative fashion. Hence a co-designed strategy is adopted to design the CLR. 

To counter the huge size of CLR we have to consider a subset of the .NET ISA 

and to write a CLR which supports this subset. The subset has to be chosen in such a way 

that instructions in this subset help us to program the embedded devices without any 

constraints. Such a minimal .NET processor has been designed which can execute a 

subset of .NET ISA efficiently by exploiting the inherent features of FPGAs. 

 

1.5 INTRODUCTION TO FPGAs 

 

Field Programmable Gate Arrays (FPGAs) are an array of logic gates that can be 

hardware-programmed to fulfill user-specified tasks. In this way, one can devise special 

purpose functional units that may be very efficient for some limited task. It is also 

possible to customize the entire instruction processor at compile time or at run time. As 

FPGAs can be reconfigured dynamically, be it only 100 to 1,000 times per second, it is 

possible to optimize them for more complex special tasks at speeds that are higher than 



 

what can be achieved with general purpose processors. An FPGA is similar to a 

Programmable Logic Device (PLD) but whereas PLDs are generally limited to hundreds 

of gates, FPGAs support thousands of gates. The underlying simplicity of FPGAs is that 

any circuit can be emulated with the available gates, and the user has to simply program 

the board by loading a bitstream, which instructs the board to configure itself.  

FPGAs fill a gap between discrete logic and the smaller PLDs on the low end of 

the complexity scale and costly custom ASICs on the high end. Since they can be 

programmed, FPGAs can be used to design hardware systems by minimizing costs 

compared to ASICs as well as provide sufficient functionality to develop complex 

systems. They consist of an array of logic blocks that are configured using software. 

Programmable I/O blocks surround these logic blocks. Both are connected by 

programmable interconnects (Fig. 1). The programming technology in an FPGA 

determines the type of basic logic cell and the interconnect scheme. In turn, the logic 

cells and interconnection scheme determine the design of the input and output circuits as 

well as and memories are afforded by support for various single ended and differential 

I/O standards. Also found on today’s FPGAs are system-building resources such as high 

speed serial I/Os, arithmetic modules, embedded processors, and large amounts of 

memory. Initially seen as a vehicle for rapid prototyping and emulation systems, FPGAs 

have spread into a host of applications. They were once too simple, and too costly, for 

anything but small-volume production. Now, with the advent of much larger devices and 

decline of per-part costs, FPGA’s are off the prototyping bench and onto production. 

 

1.6 EXISTING TECHNIQUES TO IMPROVE PERFORMANCE OF VIRTUAL 

MACHINES 

 

Many advances have been made in order to have a faster execution environment. 

A few case studies are presented in this section that show how improvements of Java 

Virtual Machines (JVM) have been accomplished with the help of hardware and 

software. The differences between the JVM and CLR are also pointed out and it can be 

inferred that issues that are applicable for a hardware design of JVM cannot be applied 

for the hardware design of CLR.  



 

1.6.1 METHODOLOGIES ADOPTED TO IMPROVE PERFORMANCE OF JVM 

 

One way to achieve a faster runtime is by having dedicated Java Coprocessors, 

which can help the host processor execute Java code better, faster and in an efficient 

manner. Some examples are JVXtreme, JStar and Xpresso [2]. Embedded systems and 

real time systems, which execute Java Code, adopt this kind of a solution. Although this 

idea seems to be attractive, it is necessary to have a GPP running on the target machine. 

Moreover, this increases the cost too.  

The other extreme is to have specific processors, which can directly execute Java 

Bytecodes. These processors are called Java Processors [3]. The beauty of these 

processors is that the very ISA of them is the JVM ISA, meaning that they work on 

bytecodes directly and run them directly on hardware, thereby achieving speedier 

execution. Moreover additional and time-consuming tasks of interpretation and JIT 

compilation are also done away with. Thus the performance benefits that can be reaped 

from such an approach are many compared to coprocessor technology. 

Another way to speed Java execution on a standard RISC architecture is to extend 

the architecture itself, to directly execute Java instructions. ARM designers added a new 

Java instruction set to the classic ARM architecture [3]. The Java ISA is executed in a 

Java mode, which is entered on a branch. In the Java mode, the CPU executes Java byte 

code instructions. There have also been complete FPGA implementations of JVM. One 

such work is the implementation of JVM on FPGAs [4] that draws its inspiration from 

Sun’s Pico Java Processor.  

So, it is evident that the JVM has been given much attention by the embedded 

systems group and reconfigurable computing groups. .NET on the other hand, is an 

upcoming technology and not so much work has been done as regards its embedded 

development. Although a chip that is capable of running a very restricted subset of the 

CLR is already out in the markets, its scope of application is pretty narrow. So in this 

project a system that can have a broader application domain but with features that might 

typically be required by an embedded system has been built. 

 

 



 

1.6.2 DIFFERENCES IN THE DESIGN ISSUES OF CLR AND JVM 

 

Although the CLR and JVM are both stack-based architectures and share a few 

common features, there are a few vital differences between them. A few of those 

differences are presented here. 

First of all, the JVM is so designed to run only Java code efficiently. Although it’s 

quite possible to make the JVM coexist with other languages, the JVM is necessarily a 

sub-optimal multi-language platform [5, 6]; whereas, the .NET framework and the CLR 

has been designed from the ground up having language interoperability in mind. The 

assembly language of the CLR is an object-oriented assembly and includes generic 

instructions, but the JVM ISA has got no generic instructions. Another difference 

between the JVM and the CLR is that Java doesn’t provide provisions for writing native 

code or type-unsafe features of typical programming languages (native pointers etc). But 

the .NET framework differentiates between managed and unmanaged code. The 

unmanaged code is capable of executing code, which can run out of the vigilance of the 

CLR. .NET adheres to the Virtual Object System (VOS). Value types can only be 

primitives in Java, where as the .NET supports structs and unions. CLR includes 

provisions for automatic boxing and unboxing, whereas JVM doesn’t. The parameter 

passing conventions differ in Java and .NET.  

Thus the various design issues and parameters are quite different for the JVM and 

the CLR. Those that apply for the JVM do not apply for the CLR, hence the need for a 

CLR specific design. 

 

1.7 ORGANIZATION OF THE THESIS 

  

 The outline of this thesis is as follows. Chapter 2 discusses the works that have 

taken place in the field of reconfigurable computing and virtual machines. Chapter 3 

describes the high-level and detailed design of the system. Chapter 4 explains the 

implementation details followed by the Chapter 5 that discusses the results obtained. 

Chapter 6 provides conclusion and the future work.  

 



 

CHAPTER 2 

LITERATURE SURVEY 

This chapter describes the existing work that have taken place in the field of 

reconfigurable computing and virtual machines and the approaches that have so far been 

adopted to improve the performance of virtual machines. 

 

2.1 JVM IMPLEMENTATION OF FPGAs 

 

 Nagendra Kumar et al have implemented Java Virtual Machine (JVM) on FPGAs 

[4]. In this work, a Java microprocessor core using FPGA technology is being 

experimented with and its preliminary functionality is tested and verified. The processor 

core eliminates the need for commonly used interpreters, JIT compilers and their 

overhead. The core accelerates the JVM runtime environment. It executes the most 

commonly used instructions in hardware. Complex instructions are micro coded, with the 

most complex ones trapped and emulated in software. This work also gives an idea of a 

“stack-cache” which is a new design methodology based on PicoJava Processor to 

accelerate the performance of the core.  

 

2.2 THE PICOJAVA PROCESSOR 

 

Olayinka Olabinjo et al offer insight into the hardware processor design of a 

stack-processor [2]. Applications written in Java are compiled to an intermediate 

representation before being sent to a client over the Internet or another network. Any 

processor and operating system combination that has an implementation of the Java 

Virtual Machine, either embedded in the operating system or in a browser, can execute 

these Java applications and produce correct results. This virtual machine comprises a 

specification of a file format for the executable (called a class file), an instruction set 

(Java byte codes), and other features such as threads and garbage collection. The main 



 

factors that influence this design are portability, security, code size, and the ease of 

writing an interpreter or a JIT compiler for a target processor and operating system. 

 

2.3 IMPLEMENTATION OF HARDWARE PARTITION ON A CO-DESIGNED 

JVM  

Hejun Ma et al examine the various aspects of a development environment, the 

effects the environment’s characteristics have on the hardware design and the factors that 

must be considered when making any design decisions [7]. The design of the hardware 

portion of the co-designed virtual machine is constrained by the target environment. The 

focus is to target desktop workstation that has an FPGA available through a local bus. 

Due to the target environment, there are several implications to the requirements of the 

hardware design, the primary one being the availability of resources. The other major 

design consideration is the Communication between the FPGA and the Host processor, 

which needs to be quick and efficient. The size and speed of the memory that is 

accessible also influences the design. All of the above mentioned factors contribute to the 

development environment and its suitability for a virtual machine.  

It is clear that a development environment suitable for one virtual machine may 

not be suitable for another. The more instructions that can be implemented in hardware 

the better, since the overall purpose of the co-design is to obtain faster execution through 

pipelining the fetch-decode-execute loop.  

 

2.4 REGISTER STACK ARCHITECTURE IN INTEL ITANIUM PROCESSORS 

 

Scott Townsend et al discuss about the register stack architecture of the Itanium 

Intel Processors and its working, functionality and performance advantages [8]. A feature 

of processors in the Itanium processor family is the Register Stack Engine (RSE). The 

RSE is a hardware implementation inside the processor that helps a subset of the General 

Registers (GRs) implements the register stack by handling register overflows. Its main 

function is to act like the traditional memory stack, except much faster. Without the RSE 

implementation, code in a program calls a function, puts the parameters to pass to the 

function on the stack (in memory), and the receiving function must retrieve them from 



 

the stack into registers to manipulate them. But in the Itanium processor family, the 

register stack enables extremely fast switching of the function call process with little to 

no overhead unlike Traditional Processors. Because of this there is a dramatic 

performance gain over the normal stack based machine. 

 

2.5 PLATAFORMA .NET 

 

The aim of this whitepaper is to analyze the portability of the .NET platform and 

the Internet revolution into the world of embedded systems [9]. The final goal would be 

to devise a hardware implementation of the .NET CLR so that CLI byte-code could be 

run natively. The particular objectives are  

• Studying the JIT compilation for embedded processors, including high 

performance processors like ARM with extensive OS support, as well as 

processors used in rapid prototyping systems with small or non-existing OS 

support.  

• Modifying the architecture of a given processor to improve execution of native 

code coming from JIT compilation of CLI. 

• Studying the viability of a processor that partially (or completely) implements the 

.NET CLR. Given the complexity of the VOS object system and the .NET virtual 

machine, it is not intended, at first, to cover the entire CLR specification. Instead, 

a significant subset will be chosen, that could be used to run simple programs and 

interact with hardware devices in an embedded environment. 

 

 

 

 

 

 

 

 



 

CHAPTER 3 

DESIGN 

This chapter discusses the design methodology adopted to construct the hardware 

and the software components of the project. First the overall methodology adopted is 

explained followed by the detailed design of the hardware and software components. 

 

3.1 OVERALL DESIGN 

3.1.1 THE CO-DESIGN METHODOLOGY 

 

This methodology is adopted to exploit advantages of both Hardware and 

software implementations of VM. The first step is identifying those MSIL instructions 

that can be implemented on hardware. To identify which part of the CLR goes into the 

hardware and which part goes into the software a static profiling was done on benchmark 

programs like Splunc, FFT and Ray Tracer. Four class of instructions namely arithmetic 

instructions(A), loads for local variables(B), loads for constants(C) and object handling 

instructions(D) were identified and their frequency of occurrences were also found out.. 

The results show that all these four classes of instructions share the majority of the total 

instructions with almost equal percentage of occurrence and hence can be directly 

implemented in hardware. 

 

Figure 3.1: Frequency of CIL instructions encountered in benchmark programs. 



 

The next step is to actually design the hardware for those identified instructions 

and porting them onto hardware, each instruction at a time. The system is then evaluated 

for performance and the above process is iterated by porting new instructions until the 

performance achieved is optimal. The flowchart (figure 3.2) depicts this process. 

 

 

Figure 3.2: Flowchart for co-designed approach 

The co-design methodology solves two purposes. Complex features of the CLR 

like object orientation, exception handling that are too complex to be run on hardware 

can be performed in software while simple accelerate-able code like loads and stores, 

arithmetic manipulations which lend themselves to parallelization can be implemented 

directly in hardware. 

 

3.1.2 COMPONENTS OF THE SYSTEM 

 

The following figure (Figure 3.3) below depicts the overall system.  The basic 

components of the system are 

• MicroBlaze Softcore Processor and main memory 

• Custom Hardware encompassing the functional units and the 32 entry stack 

• Processor and Custom Hardware Interface – The FSL Interface 

 



 

 

Figure 3.3: Overall Design of the System 

3.1.2.1 MICROBLAZE SOFTCORE PROCESSOR 

 

The MicroBlaze embedded soft core is a reduced instruction set computer (RISC) 

optimized for implementation on Xilinx field programmable gate arrays (FPGAs). The 

MicroBlaze embedded soft core is highly configurable, allowing users to select a specific 

set of features required by their design. This is a 300MHz 32-bit big-endian processor. 

The processor’s fixed feature set includes the following: 

• Thirty-two 32-bit general purpose registers 

• 32-bit instruction word with three operands and two addressing modes 

• 32-bit address bus 

• Single issue pipeline 

 

3.1.2.2 CUSTOM HARDWARE 

Configured Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that 

implement logic plus storage elements used as flip-flops or latches. These CLBs are 



 

utilized to design the custom hardware, which can either be a stack or an adder or a shift 

barrel multiplier to perform various required operations. The custom hardware primarily 

comprises of three components, namely 

• A 32-entry Hardware Stack 

• Control Unit 

• Configured Functional Units 

 

3.1.2.3 PROCESSOR AND CUSTOM HARDWARE INTERFACE 

 

The Processor-Custom Hardware communication is achieved with the help of an 

existing Fast Simplex Link (FSL) interface which has been provided by Xilinx for 

communication with low latency between the hardware and the softcore processor.  FSL 

is a unidirectional point-to-point communication channel bus used to perform fast 

communication between any two design-elements on the FPGA when implementing an 

interface to the FSL bus. Up to 8 master and slave FSL interfaces are available on the 

Xilinx MicroBlaze soft processor. These existing interfaces are used to transfer data to 

and from the register file on the processor to hardware running on the FPGA.  Following 

are the features of FSL. 

• Implements a unidirectional point to point FIFO-based communication 

• Provide mechanism for unshared and non-arbitrated communication 

mechanism. This can be used for fast transfer of data words between master 

and slave implementing the FSL interface 

• Provides an extra control bit for annotating data being transmitted. This 

control bit can be used by the slave- side interface for multiple purposes.  

• FIFO depths can be as low as 1 and as high as 8K. 

• Supports both synchronous and asynchronous FIFO modes. This allows the 

master and slave side of the FSL to clock at different rates. 

FSL has I/O signals that must be activated by the hardware. These signals instruct 

how the data transfer happens between the softcore and the hardware.  



 

 

The signals can be split into 3 categories. The first category of signals control the 

FSL bus while the next two categories refer to the signals that control the master and 

slave peripherals connected to the FSL bus.  

 

3.1.2.3.1 SIGNALS THAT CONTROL THE FSL BUS 

 

• FSL_CLK 

This is the input clock to the FSL bus when used in the synchronous FIFO 

mode. The FSL_CLK is used as the clock for both the master and slave 

interfaces. 

• FSL_RST 

Output reset signal generated by the FSL reset logic. Any peripherals 

connected to the FSL bus may use this reset signal to operate the 

peripheral reset. 

• FSL_FULL 

Indicates FSL buffer is full 

• FSL_HASDATA 

Indicates FSL buffer has data 

 

3.1.2.3.2 SIGNALS THAT CONTROL THE MASTER AND SLAVE 

PERIPHERALS CONNECTED TO THE FSL BUS 

 

• FSL_M_CLK/FSL_S_CLK 

This port provides the input clock to the master or slave interface of the 

FSL bus when used in the asynchronous FIFO mode. 

• FSL_M_DATA/FSL_S_DATA 

The data input to the master interface of the FSL bus and output to the 

slave interface of the FSL bus. 

• FSL_M_CONTROL/FSL_S_CONTROL 



 

Single bit control signal that is propagated along with the data at every 

clock edge by both the master and the slave. 

• FSL_M_WRITE 

Input signal that controls the write enable signal of the master interface of 

the FIFO. When set to ’1’, the values of FSL_M_Data and 

FSL_M_Control are pushed into the FIFO on a rising clock edge 

• FSL_S_READ 

Input signal on the slave interface that controls the read acknowledge 

signal of the FIFO. When set to ’1’, the values of FSL_S_Data and  

FSL_S_Control are popped from the FIFO on a rising clock edge 

• FSL_M_FULL 

Output signal on the master interface of the FIFO indicating that the FIFO 

is full. 

• FSL_S_EXISTS 

Output signal on the slave interface indicating that FIFO contains valid 

data 

 

3.2 DETAILED DESIGN 

 

The approach that has been adopted here is similar to a classical five-stage 

pipeline. The software part acts as a fetch and the decode unit, while the hardware part 

functions as an execute and write unit. The following sections explain the software, 

hardware and the interface design of the system. 

 

3.2.1 SOFTWARE DESIGN 

 

CLR engine, the software executor, forms the software partition and is 

responsible for the execution of CIL code. This engine is loaded inside the MicroBlaze 

softcore processor. After getting invoked, the CLR engine first loads the assembly (a 

standalone executable, similar to class file in Java) into the instruction buffer. This 

executable is referred to as a portable executable (PE). It’s worth noting here that we are 



 

running on a memory-restricted environment, in which we don’t have the provision of 

loading very large assemblies. The memory needed, is necessarily a bottleneck. The CLR 

engine’s core can be roughly portrayed by a large switch-case running in an infinite loop, 

as shown in the figure given below. 

while(moreInstructions()) 
{ 

switch(next_instruction()) 
{ 
case ADD: 

doAdd(); 
break; 

... 

... 
case PUSH: 

doPush(); 
break; 

} 
} 

 

The code written above is very similar to the software VM. More sophisticated 

techniques such as JIT or AOT are not employed here because a few of the instructions 

are to be implemented directly in hardware. 

So when a .NET PE is given as the input to the CLR Engine, the program entry 

point is identified using the EntryPointToken present in the PE. Control information or 

the metadata information is embedded in the PE in the form of streams and tables. Each 

PE can have up to 43 tables and five streams. One such table is the MethodDef Table, 

which has information about the methods in the program. A row in the MethodDef table 

is indexed and the MethodRVA, which is the relative virtual address of the method to be 

executed is found. Next the method signature is identified. Once this is done we jump to 

the MethodRVA and read the Method Header. Method Header is classified into FAT 

Header and Tiny Header. Tiny Header is used incase the method has no local variables 

and arguments. In all other cases the FAT Header will be present. In the FAT header the 

LocalVarSigToken that will give us information about the number of local variables and 

type of the variables needed for this method is read. This process of initializing the 

metadata is explained in figure 3.4. The figure also explains how the flow of a method 

invocation takes place. 



 

 

Figure 3.4: Flow Diagram for Method Invocation 

The local variables and arguments of a method are initialized in the stack after 

which the CLR core gets executed. Each CIL instruction is read from the method body. 

Once the software engine decodes the instructions, the hardware system is alerted with 

the type of operation to be performed. This is performed by writing the interface with the 

opcode of the instruction read. The interface takes care of writing this value to the control 

unit in the hardware. The exception to this case are the load instructions where the data to 

be loaded is also written to the interface. The interface is configured to read and write 

both the control and data register in the hardware. Since the .NET is a stack-based 

machine, each CIL instruction manipulates the stack only. So the operands needed by an 

instruction are present either in the stack or in the data register of the hardware. 

Effectively the hardware becomes a self-contained entity with the software periodically 

alerting the hardware with the kind of operation that the hardware has to perform.  

 

3.2.2 HARDWARE DESIGN 

 The hardware system consists of a stack, a control unit and functional units for 

performing operations. This section explains each of them in detail. These components 

are shown in figure 3.5.  



 

 

Figure 3.5: Hardware Design 

 

3.2.2.1CONTROL UNIT 

 

The following are the components of a control unit.   

• Stack Pointer (SP) 

An index into the stack that identifies the top of the stack 

• ArgsStart - Argument Pointer 

A pointer to the stack that identifies the start of arguments passed to a 

method that is currently getting executed by the CLR engine. 

• LocalsStart – Locals Pointer 

A pointer to the stack that identifies the start of local variables passed to a 

method that is currently executed by the CLR engine. 

• Base Register 

A register that contains the base address of either the local variables or 

arguments passed to the function depending on the type of instruction 

currently getting executed. 



 

• Offset Register 

A register that contains an index into the stack from the address in the base 

register to access the corresponding local variable or the argument 

• Control Register 

This register contains the type of operation to be performed by the stack. 

This register is written by the softcore processor to instruct the stack to 

perform the required operation. 

• Data Register 

This register is written by the softcore processor. The value in this register 

is then written onto the stack by the hardware. The stack reads the control 

register and if it finds that the instruction is a load instruction then it reads 

the data to be loaded from the data register. Hence it is necessary for the 

software to write the data onto the data register by fetching it from the 

executable if the instruction it encounters is a load instruction. The 

exceptions are the load constants instructions which take the data based on 

an opcode directly and not from the data register.  

The control register contains an opcode that identifies the type of operation to be 

done by the hardware whereas the data register has the data needed to fill the stack. When 

the CLR engine identifies the operation to be performed it writes the control register 

through the FSL link. Incase of push instructions the CLR engine writes the data to be 

pushed onto the stack in the data register. The hardware identifies the type of operation to 

be performed and if it finds that a push needs to be done it uses the data present in the 

data register. Otherwise the hardware manipulates the elements of the stack. Base and 

offset registers have been provided for the purpose of random access on the stack. 

  

3.2.2.2 HARDWARE STACK 

 

The hardware stack is a 32-entry stack and each entry in the stack is a 32-bit 

register. The stack is modeled in lines of the Intel Itanium Processor [8]. It has been built 

in such a way that various operations that need to be done on the stack can be done by 

directly manipulating the stack entries, thereby preventing unnecessary pushes and pops. 



 

To optimize stack accesses we have two registers (A and B) that contain the TOS 

and TOS2 of the stack (where TOS stands for Top of Stack). These two registers are used 

by the functional units to handle binary operations. These registers get loaded with the 

top of stack by default and when changes are made in the stack. This design helps us in 

saving time required to perform stack accesses. 

Following are the operations that are implemented in Hardware 

• Push, Pop, Dup 

• Load Constants (makes up app. 40 % of the instructions in an executable.) 

• Load/Store args 

• Load/Store locals 

• Binary Operations: Add, Sub, BitAnd, BitOr, BitXor, BitNot, Negate  

• Signed Compare Instructions 

• Signed Branches and jumps  

Special mention is to be made on the branch instructions since they involve two-

way data transfer from the stack to the software and vice versa. The result of the branch 

condition is intimated to the software, which uses this result to get the target instruction. 

Load and store of local variables and arguments is done using the base and offset 

registers, which are pointers to the stack. For load instructions the stack[base + offset] is 

loaded onto the stack top and register A and B are appropriately changed while for store 

instructions the contents of register A is stores onto stack[base + offset]. While the offset 

register is initialized by the software, the base register is initialized with either the 

ArgsStart or the LocalsStart based on the type of opcode by the hardware (i.e.)  

BaseRegister <= LocalsStart if opcode is ldloc/stloc 

BaseRegister <= ArgsStart if opcode is ldarg/starg. 

 

 

 

 

 

 

 



 

CHAPTER 4 

IMPLEMENTATION 

This chapter discusses the detailed implementation of the hardware and software 

components of the project. First the software implementation is explained in detail 

followed by hardware implementation.  

 

4.1 SOFTWARE IMPLEMENTATION – CLR ENGINE 

 

 The CLR engine was implemented using C, which was compiled by the 

MicroBlaze C Compiler (mb-gcc). The main functions of this phase are bootstrapping of 

the .NET PE followed by metadata initialization. This is followed by the Core CLR loop 

which does the fetching and decoding of each instruction. 

 

4.1.1 BOOTSTRAPPING 

 

 Initially, the .NET PE will be given as the input to the CLR engine. The binary 

dump of the executable is statically included in the file. This results in eliminating 

redundant disk accesses since the entire input is statically included in the input. All 

information about executable is included in the form of tables and streams. So the first 

step is to find out where the streams and tables are located in the executable. This is done 

by the bootstrapping phase. The steps in this phase are 

1. Reading the DOS header to find if the given file is a valid WIN32 executable. 

2. Once this validity is done the code and the data segment sizes are read. 

3. Next step is to read the entry point followed by the base address of the code 

and the data section. These addresses are relative to the start of the executable 

and are called as the Relative Virtual Address (RVA). 

4. After getting the RVAs of the code and the data section we read the section 

alignment values. Generally each section of the code is aligned to a 512-bit 

boundary. 



 

5. Next step is to read the CLR header RVA and the CLR Header size. 

6. Then we jump to CLR header RVA to read the metadata RVA and metadata 

size. Metadata RVA gives the information about where the tables and the 

streams are located. 

7. Once the metadata RVA is read, we read the entry point token. The format of 

entry point token is shown below. 

 

Figure 4.1: Entry Point Token Format 

The entry point token serves in identifying the starting point of the execution. 

Generally the starting points of execution can either be a method or another 

assembly file. Current support has been offered for programs that have the 

starting point of execution in the current file. The entry point token is a 4-byte 

value that has the following information. The Most Significant Byte of the 

entry point token is a table index while the remaining 3 bytes index into the 

row of the table. The table that is indexed by the entry point token is the 

Method table that contains information about all the methods in the table. To 

identify which method is the starting point the remaining 3 bytes are used to 

index into the method table. Another important job of bootstrapping is to find 

the RVAs of all the streams that are present in the PE. So once the entry point 

token and the starting method to be executed are identified the metadata is 

initialized. 

 

4.1.2 METADATA INITIALIZATION 

 

 As mentioned earlier the metadata information is organized in the form of tables 

and streams. The following are the data structures used to initialize the metadata. 



 

Metadata 
{ 

Int64 tables_bit_vector;//A bit vector indicating 
       which tables are present 

Int32 no_of_tables; 
Int32 sorted_tables_bit_vector;   
Int32 no_of_rows[64];//Rows in each table 

}metadata; 

 

This data structure stores the no of tables that are present in the PE. A maximum 

of 43 tables can be present in the PE. A table bit vector that contains which of these 43 

tables is present is also stored. This data structure also contains information regarding the 

number of rows present in each of these 43 tables. 

MethodDefEntry 
{ 

Int32 RVA;//RVA of the current method 
Int16 implFlags; 
Int16 flags; 
Int16 nameIndex;//Index into the string stream 
Int16 sigIndex;//Index into the blob stream 
Int16 paramIndex;//Index into the parameter  

table. 
}methodDefEntry; 

 

This data structure is used to store information about each of the rows in the 

method table. The RVA data field in this data structure stores the RVA of each of the 

method present in the executable. The nameIndex field is an index into the “string” 

stream that gives the name of the method corresponding to this row in the method table. 

The paramIndex field is an index into the parameter table while the sigIndex is an index 

into the blob heap, which gives information regarding the signature of this method. 

MethodFatHeader 
{ 

Int16 flagsAndSize;//Specify the header type(FAT  
or TINY) 

Int16 maxStack;//No of stack entries this method 
 uses 

Int32 codeSize;//(in bytes) 
Int32 localVarSigToken;//Index into StandAloneSig  

table to get local variable information 
}methodFatHeader; 

 

Each method has a method header that gives information about the method to be 

executed. Method headers can be classified into Fat and Tiny headers. Tiny headers are 

for those methods that have no arguments and have no stack requirements while the fat 

header is used for ordinary methods. This information is present in the first two bytes of 



 

the header followed by the maximum stack that this method will consume. Following 

maxStack is the codesize information. Next is the local variable token that contains 

information like the number of local variables present and the type each local variable 

present. 

LocalsBlobSignature 
{ 

Byte size;//The no of bytes occupied by this 
 stream for the current method 

Byte magicNumber;//0x07  
Byte localsCount;//The number of local variables. 
// followed by the variables themselves 

}localsBlobSig; 

 

This data structure gives information regarding the local variables for each of the 

methods present in the method table. The first variable named size contains the size of 

this structure followed by the magic number (0x07). Next is the no of local variables 

present in this method followed by the type of each of the local variables present in the 

method 

MethodSignature 
{ 

Byte  byteCount; //The no of bytes occupied by  
this stream for the current method 

Byte  flags; 
Int32 noArgs;//The number of arguments for this  

method 
Byte  returnType; 
Int32 argsStartRVA;//The RVA of the argument list 

}methodSig; 

This data structure gives information regarding the signature of each method 

getting executed. The first information is the size of this structure followed by flags. Next 

information that is present is the number of arguments of each method and the return type 

of each method. Next we have argsStartRVA that is an index that contains the type of 

each argument passed to the function. 

After initializing the metadata we move onto the core CLR loop. 

 

4.1.3 CORE CLR LOOP 

 

 The function of this module is to fetch the instruction to be executed next, decode 

it and interrupt the hardware asking it to execute the instruction. But before this process 



 

the stack must be initialized with the arguments and local variables for this method. A 

point that needs to be mentioned here is that we implement the operand stack in hardware 

while the control stack is taken care of by the software. The sequence of operations 

performed here are 

1. The argsStart and localsStart registers are initialized 

2. The stack is initialized with arguments to the method followed by the local 

variables themselves. 

3. The next instruction from the input stream is read and decoded.  

4. If the instruction has an immediate operand it is read and both the opcode and 

the operand are written to the control and data register of the hardware. 

5. If a function call occurs, the values of SP, argsStart and localsStart are stored 

in the control stack of the software. The function token, the headers, the data 

structures are read and switching is done to Step1 

6. If a return is encountered, the locals and arguments of the stack are flushed, 

the modified SP is loaded back, the values of argsStart and localsStart of the 

callee function are copied back onto the stack. 

7. When the function ends, checking is done to ensure that the stack is in the 

same state as it was before the function call. 

When the program completes execution the values of SP and the control registers 

are checked to be -1 and zero respectively. This is confirmed by printing the stack trace 

of the output for each instruction and at the end we can confirm that SP has been set back 

to -1. 

 

4.2 HARDWARE IMPLEMENTATION 

 

 The hardware implementation consists of the hardware stack, the functional units 

and the control unit. The implementation was done in Very High Speed Integrated Circuit 

Hardware Description Language (VHDL). This file is then compiled and combined along 

with the software module, which is in the form of an Executable and Linking Format 

(ELF), and a bitstream is generated. This bitstream is downloaded onto the board and it is 

run. The hardware implementation consists of the following blocks. 



 

1. Control Unit 

2. Stack Unit 

3. Functional Units 

The following figure 4.2 explains the hardware system in detail 

 

Figure 4.2 Detailed Hardware Design 

4.2.1 CONTROL UNIT 

 

 Control unit consists of the Stack Pointer (SP), ArgsStart Pointer, LocalsStart 

Pointer, the base and offset registers and the control and the data register. Each of these is 

a 5-bit register. All these registers are written by the FSL interface and read by the stack. 

The initialization of these registers is by writing the control register with the opcode 

GetLocalArgs meaning that the argsStart and the localsStart are initialized with the 

values in the data register in a single clock cycle. This is achieved by encoding the data 

register with both these values and while fetching from the data register we decode it as 

follows. 

when GetLocsArgs=> 
localsStart <= op(27 to 31); 



 

 argsStart <= op(19 to 23); 
 state <= idle; 

When the control register is written by the CLR engine, the control unit decodes 

the value. If the opcode written refers local variables or arguments then the base and 

offset registers are used to perform random access on the stack. If the opcode received is 

ldloc/stloc then the base register is initialized with localsStart. Else if the opcode received 

is ldarg/starg then the base register is initialized with argsStart. The following code 

snippet explains this. 

if (unsigned(FSL_S_Data) >= 37 and unsigned(FSL_S_Data) <= 
40) then -- ldargs's 

base <= argsStart;  
offset <= FSL_S_Data(27 to 31) - 37; 
state <= Load_From_Stack1; 

elsif (unsigned(FSL_S_Data) = 41) then -- ldarg.s 
base <= argsStart; 
state <= Read_Operands; 

elsif (unsigned(FSL_S_Data) >= 42 and unsigned(FSL_S_Data) 
<= 45 ) then -- stloc's 

sp <= sp - 1; 
base <= localsStart; 
offset <= FSL_S_Data(27 to 31) - 42; 
state <= Store_Into_Stack; 

elsif (unsigned(FSL_S_Data) = 46) then-- stloc.s 
base  <= localsStart; 
state <= Read_Operands; 

 

4.2.2 STACK UNIT 

 The hardware stack has been implemented as an array of 32 registers, each being 

a 32-bit register. 

constant MAXSTACK:INTEGER := 32; -- the max stack length 
type stack_file is array (MAXSTACK-1 downto 0) of 
std_logic_vector (0 to 4);  
signal stack : stack_file; 

This declaration creates a 32 entry 32-bit stack. The hardware also includes two 

temporary registers (A and B), which act as source registers for the functional units. 

These registers are initialized with the top two data from the stack in each clock cycle. So 

when an arithmetic operation is to be performed the top two elements would have been 

already available as source registers for the functional unit. This implementation helps in 

saving two pops that must occur for each operation to be performed. Since these registers 

are updated in each clock cycle any change in the top two elements in the stack will be 



 

automatically reflected in each of the two registers. The following state machine 

describes the operation of the stack in detail. 

 

Figure 4.3: State Diagram of the hardware system. 

The hardware is initially in the “idle” state. On getting the opcode it moves to the 

read opcode state. Based on the opcode read it moves to either the DoBinOps state or 

Load Constants state or the Read Operands state or Load from Stack1 state. In the read 

operand state it reads the immediate value of an instruction that is fetched by the CLR 

and written in the data register. From the read operands stage it moves to either of load 

constant or load from stack or store from stack state. There is a temporary stage transfer 

from the load from stack1 state to the load from stack2 state before we move back to the 

idle state. 

 

 4.2.3 FUNCTIONAL UNITS 

 

The functional units perform basic arithmetic operations and bitwise operations on 

the data. The following are the functional units that have been designed. 

1. Additions and Subtractions 

2. Multiplication 



 

3. All Branch instructions 

4. Compare Instructions 

5. Bit Manipulation instructions like (AND, OR, XOR, NEGATE, NOT). 

All these units take the values of registers A and B as source operand and put the 

result back into the stack except for branches that give the result back to the CLR engine. 

The result for branch instruction specifies the outcome of the branch comparison, which 

is used by the CLR engine to calculate the branch target instruction. 

 

4.3 INTERFACE ACCESS 

 

 Access to the FSL buffer is via the microblaze_bread_datafsl() and 

microblaze_bwrite_datafsl() calls. Here bread and bwrite refers to blocking read and 

write meaning that the slave waits till the data is available in the FSL buffer and the 

master waits till the FSL buffer becomes free. The parameters to this function are the FSL 

interface number and the data to be written in the buffer.  

 

4.3.1 FSL WRITE OPERATION 

 

 When the data in FSL_M_Data and control bit in FSL_M_Control are ready to be 

pushed into the FIFO, the FSL_M_Write signal is set to ’1’ for one clock cycle. This will 

push the Data and Control signals onto the FIFO. If the FIFO is not implemented with 

BRAMs the data becomes available to the slave FSL interface as FSL_S_Data and the 

control becomes available as FSL_S_Control after the write clock edge. Further, the 

FSL_S_Exists signal is set to ’1’ to indicate data exists in the FIFO.  

 The following code snippet describes the sequence of operations to be performed 

when the push opcode is encountered. 

int FSL_Push(int toPush) 
{ 
 int j = 0; 
 microblaze_bwrite_datafsl(2,0);//the opcode is 

 written in the control register 
microblaze_bwrite_datafsl(toPush,0);//the data to be  

loaded is written in data register.    
microblaze_bread_datafsl(j,1); 

 sp ++;//increment stack pointer 



 

 return j; 
} 

 

4.3.2 FSL READ OPERATION 

 

 The read side of the FSL bus is controlled by the FSL_S_Read signal. When data 

is available in the FSL bus (FSL_S_Exists = ’1’), the data in FSL_S_Data and the control 

bit in FSL_S_Control are immediately available to be read by the slave on the FSL bus. 

Once the slave completes the read operation, the FSL_S_Read signal has to be set to ’1’ 

for one clock cycle acknowledging that a Read has successfully been completed by the 

slave. After the clock edge where the read takes place, the FSL_S_Data and 

FSL_S_Control are updated with new data and FSL_S_Exists and FSL_M_Full are 

updated. The next chapter gives the results and performance comparison of the co-

designed strategy and a pure software strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

RESULTS 
 

5.1 THE SYSTEM 

 

The system used for testing is a Xilinx Virtex II Pro FPGA Board. This board has 

a 300MHz softcore MicroBlaze processor that employs 32-bit big-endian format. The 

board has a 32KB on-chip memory and a 256MB off-chip DDR memory. A .NET PE is 

given as an input to the CLR engine. After identifying the initial entry point, the CLR 

engine works asynchronously with the hardware to execute the PE. Since .NET Virtual 

Machine (VM) is a stack-based machine and each instruction is manipulated on stack 

alone, the design prints the stack trace of the executable as each instruction is executed. 

The Stack trace will contain the current value associated to the Stack Pointer (SP) along 

with the instructions it points to. The trace also depicts details such as the Relative 

Virtual Address (RVA) of the function invoked, its size, number of arguments in the 

method and the starting address of these arguments in the stack. The output can be seen 

in the HyperTerminal. Stack-trace as the output is a proof of the fact that the PE got 

executed. 

 

5.2 HYPER TERMINAL SETTINGS 

 

The Board is connected through RS232 cable and a JTAG cable. A Hyper 

Terminal was opened with the following configuration. 

Connect Using: COM1 port 
Bits per second: 9600 
Data bits: 8 
Parity: None 
Stop bits: 1 
Flow control: Hardware 
 

5.3 TEST CASES 

 

 The input to the CLR engine is the executable of the C# code. The input 

executable is disassembled to Microsoft Intermediate Language (MSIL) and shown 

below. 

.method private hidebysig static void Main() cil managed 



 

{ 
 // Code size: 41 bytes 
 .maxstack 2 
 .locals ([0] int32 V_0,[1] int32 V_1) 
 IL_0000: ldc.i4.s    0x0a//10 
 IL_0002: stloc.0      
 IL_0003: ldc.i4.s    0x14//20 
 IL_0005: stloc.1      
 IL_0006: ldloc.0      
 IL_0007: ldloc.1      
 IL_0008: add          
 IL_0009: stloc.0      
 IL_000a: ldloc.0      
 IL_000b: ldloc.1      
 IL_000c: call int32  

InsideCSharp.HelloWorldConsoleApp::function(int32, 
int32) 
  

IL_0011: stloc.0      
 IL_0012: ldloc.0      
 IL_0013: ldloc.1      
 IL_0014: bge.s       IL_001c 
 IL_0016: ldloc.0      
 IL_0017: ldloc.1      
 IL_0018: sub          
 IL_0019: stloc.0      
 IL_001a: br.s        IL_0024 
 IL_001c: ldloc.0      
 IL_001d: ldloc.1      
 IL_001e:     blt.s                  IL_0024 
 IL_0020: ldloc.0      
 IL_0021: ldc.i4.1     
 IL_0022: sub          
 IL_0023: stloc.0      
 IL_0024: ldloc.0      
 IL_0025: ldc.i4.1     
 IL_0026: add          
 IL_0027: stloc.0      
 IL_0028: ret          
}//end of method InsideCSharp.HelloWorldConsoleApp::Main 
 
.method public hidebysig static int32            
function(int32 a, int32 b) cil managed 
    { 
      // Code size       8 (0x8) 
      .maxstack  2 
      .locals init (int32 V_0) 
      IL_0000:  ldarg.0 
      IL_0001:  ldarg.1 
      IL_0002:  sub 
      IL_0003:  stloc.0 
      IL_0004:  br.s       IL_0006 
 
      IL_0006:  ldloc.0 
      IL_0007:  ret 
    } // end of method HelloWorldConsoleApp::function 



 

The C# equivalent to above MSIL code is  

 
namespace InsideCSharp {  
    class HelloWorldConsoleApp { 
   static void Main() { 
  int i=10,j=20; 
  i=i+j; 
  i = function(i, j); 
  if(i<j) 
   i=i-j; 
  else if(i>=j) 
   i=i-1; 
  i++; 
   } 
 public static int function(int a, int b) { 
  return a-b; 
 } 
    } 
} 

 
The input case above encompasses all types of instructions that are being 

implemented in hardware such as Load constants, Add, Multiply, Subtract, Conditional 

and Unconditional Branching, and Functions handling. 

Following is the Stack Trace of the above code executed on the Xilinx Virtex II pro board 

Figure 5.1 provides the stack trace of the function main (). The initialization of Relative 

Virtual Address (RVA), Number of arguments to the method, Starting address of the 

arguments and size of the function are depicted in figure 1. 



 

 

Figure 5.1: Snapshot depicting the initialization of the main method. 

Figure 5.2 depicts the trace of call to another function named “function” and the 

initialization of variables and operations on them for that function. Figure 5.1 is shown 

below 



 

 

Figure5. 2: Snapshot depicting the call of method function(int,int) 

Figure 5.3 depicts the trace of the control getting back to the main function and then a 

Branching statement “greater than or equal to” getting executed. 

.  

Figure 5.3: Snapshot depicting the return of the method function() and handling of 

branch condition 



 

Figure 5.4 depicts the execution of an unconditional branch as well as a subtraction and 

addition operation 

 

Figure 5.4 Snapshot depicting the execution of unconditional branch instruction 

Figure 5.5 depicts the return of the main method and the end of execution of the program 

with the stack being reset to the original condition. 

 

Figure 5.5: Snapshot depicting the end of execution of the program. 



 

5.4 PROFILING 

The profiled output after porting the Software interpreter on Hardware without 

Custom Hardware Support is shown in figure 5.6 and the profiled output after porting the 

CLR on Hardware with Custom Hardware support is shown in figure 5.7. 

The function main2() does the core job of execution. A comparison of the time 

taken by this function with and without Hardware support is done and the overall Speed 

Up is calculated. The values for the pure software and co-designed solution in 

microseconds are 10467.20 and 4757.72 respectively per function call. 

 

Flat profile: 
 
Each sample counts as 5e-05 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls  us/call  us/call  name     
 77.94      4.68     4.68                             XUartLite_SendByte 
  8.36      5.18     0.50                             __modsi3 
  4.21      5.44     0.25                             _mbtowc_r 
  2.78      5.60     0.17        1 167228.34 222208.72  main 
  1.38      5.69     0.08                             _vfprintf_r 
  1.08      5.75     0.07                             __sfvwrite 
  0.54      5.78     0.03                             memmove 
  0.36      5.81     0.02                             __umoddi3 
  0.36      5.83     0.02                             outbyte 
  0.35      5.85     0.02                             memchr 
  0.29      5.87     0.02                             fflush 
  0.28      5.88     0.02                             __udivdi3 
  0.23      5.90     0.01        1 13573.24 49473.68  executeMethod 
  0.23      5.91     0.01                             __umodsi3 
  0.21      5.92     0.01      427    29.45    54.12  my_f_read 
  0.20      5.93     0.01                             __udivsi3 
  0.19      5.95     0.01                             write 
  0.18      5.96     0.01      690    16.01    16.01  readByteFromStream 
  0.15      5.97     0.01      248    36.59    36.59  printStackTrace 
  0.13      5.97     0.01                             __mulsi3 
  0.12      5.98     0.01                             __swrite 
  0.10      5.99     0.01                             puts 
  0.06      5.99     0.00                             strlen 
  0.04      5.99     0.00                             XUartLite_RecvByte 
  0.04      5.99     0.00      145    16.72    16.72  pop 
  0.03      6.00     0.00       75    21.33    21.33  my_f_seek 
  0.02      6.00     0.00                             vfprintf 
  0.02      6.00     0.00        1  1349.83  2073.68  updateMetadata 
  0.02      6.00     0.00      172     6.47     6.47  push 
  0.02      6.00     0.00                             printf 
  0.01      6.00     0.00       32    20.70    36.71  my_f_getc 
  0.01      6.00     0.00       12    54.16    54.16  getOffsetForTable 
  0.01      6.00     0.00                             my_f_eof 
  0.00      6.00     0.00                             getTos2 
  0.00      6.00     0.00       24    10.42    10.42  my_f_tell 
  0.00      6.00     0.00        6    41.66   258.14  getMethodFatHeaderFromStream 
  0.00      6.00     0.00                             __fixdfsi 
  0.00      6.00     0.00                             __muldi3 
  0.00      6.00     0.00        6    25.00   187.36  getLocalsBlobSignatureFromStream 
  0.00      6.00     0.00                             _malloc_r 
  0.00      6.00     0.00        1   112.49   112.49  initStack 
  0.00      6.00     0.00                             __divsi3 
  0.00      6.00     0.00                             _puts_r 
  0.00      6.00     0.00        1    99.99 10467.20  main2 
  0.00      6.01     0.00                             _exception_handler 



 

  0.00      6.01     0.00                             _printf_r 
  0.00      6.01     0.00        6     8.33   333.06  getMethodDefEntryFromStream 
  0.00      6.01     0.00                             __sinit 
  0.00      6.01     0.00                             localeconv 
  0.00      6.01     0.00                             __smakebuf 
  0.00      6.01     0.00                             _calloc_r 
  0.00      6.01     0.00                             setlocale 
  0.00      6.01     0.00        6     0.00   248.23  getMethodSignature 
  0.00      6.01     0.00        1     0.00 49994.71  execute 

 

Figure 5.6:  Snapshot of the execution time of Pure Software Solution 

 

Flat profile: 

 
Each sample counts as 5e-05 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls  us/call  us/call  name     
 77.94      4.68     4.68                             XUartLite_SendByte 
  8.36      5.18     0.50                             __modsi3 
  4.21      5.44     0.25                             _mbtowc_r 
  2.78      5.60     0.17        1 167228.34 222208.72  main 
  1.38      5.69     0.08                             _vfprintf_r 
  1.08      5.75     0.07                             __sfvwrite 
  0.54      5.78     0.03                             memmove 
  0.36      5.81     0.02                             __umoddi3 
  0.36      5.83     0.02                             outbyte 
  0.35      5.85     0.02                             memchr 
  0.29      5.87     0.02                             fflush 
  0.28      5.88     0.02                             __udivdi3 
  0.23      5.90     0.01        1 13573.24 49473.68  executeMethod 
  0.23      5.91     0.01                             __umodsi3 
  0.21      5.92     0.01      427    29.45    54.12  my_f_read 
  0.20      5.93     0.01                             __udivsi3 
  0.19      5.95     0.01                             write 
  0.18      5.96     0.01      690    16.01    16.01  readByteFromStream 
  0.15      5.97     0.01      248    36.59    36.59  printStackTrace 
  0.13      5.97     0.01                             __mulsi3 
  0.12      5.98     0.01                             __swrite 
  0.10      5.99     0.01                             puts 
  0.06      5.99     0.00                             strlen 
  0.04      5.99     0.00                             XUartLite_RecvByte 
  0.04      5.99     0.00      145    16.72    16.72  pop 
  0.03      6.00     0.00       75    21.33    21.33  my_f_seek 
  0.02      6.00     0.00                             vfprintf 
  0.02      6.00     0.00        1  1349.83  2073.68  updateMetadata 
  0.02      6.00     0.00      172     6.47     6.47  push 
  0.02      6.00     0.00                             printf 
  0.01      6.00     0.00       32    20.70    36.71  my_f_getc 
  0.01      6.00     0.00       12    54.16    54.16  getOffsetForTable 
  0.01      6.00     0.00                             my_f_eof 
  0.00      6.00     0.00                             getTos2 
  0.00      6.00     0.00       24    10.42    10.42  my_f_tell 
  0.00      6.00     0.00        6    41.66   258.14  getMethodFatHeaderFromStream 
  0.00      6.00     0.00                             __fixdfsi 
  0.00      6.00     0.00                             __muldi3 
  0.00      6.00     0.00        6    25.00   187.36  getLocalsBlobSignatureFromStream 
  0.00      6.00     0.00                             _malloc_r 
  0.00      6.00     0.00        1   112.49   112.49  initStack 
  0.00      6.00     0.00                             __divsi3 
  0.00      6.00     0.00                             _puts_r 
  0.00      6.00     0.00        1    99.99  4757.72  main2 
  0.00      6.01     0.00                             _exception_handler 
  0.00      6.01     0.00                             _printf_r 
  0.00      6.01     0.00        6     8.33   333.06  getMethodDefEntryFromStream 
  0.00      6.01     0.00                             __sinit 
  0.00      6.01     0.00                             localeconv 
  0.00      6.01     0.00                             __smakebuf 



 

  0.00      6.01     0.00                             _calloc_r 
  0.00      6.01     0.00                             setlocale 
  0.00      6.01     0.00        6     0.00   248.23  getMethodSignature 
  0.00      6.01     0.00        1     0.00 49994.71  execute 
 

Figure 5.7: Snapshot of the execution time of Co-designed Solution 

 

 

A flat profiling is done as explained with and without the hardware 

Implementation and the results are tabulated. These are shown in figure 5.8. 

 

Speed Up Factor = Execution time Pure Software / Execution Time Co-designed 

 

 

Program 
Software 

(microseconds) 
Hardware 

(microseconds) 
SpeedUp 
acheived 

Comment 

P1 38012.12 22360.07 1.7 Load args and load local vars intensive 

P2 18032.21 7360.08 2.45 Load constants and arith operations intensive 

P3 7836.23 4124.33 1.9 A simple function call 

P4 10467.20 4757.72 2.2 Binary and unary operations intensive 

P5 1043.10 869.16 1.2 Hello world program 

Figure 5.8: Profiling results 
     

From the above figures, the average speed up factor is found to be 1.89. Thus it can 

be concluded that the performance of a co-designed .NET processor is better than a pure 

software solution. This vindicates our aim that a hardware implementation is better than a 

pure software approach.  

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

Although technologies like Java and .NET have become predominant day by day 

due to the increase in demand for homogeneous computing, their performance, due to 

interpretation, becomes inferior. It, therefore, becomes imperative to improve the 

performance. The .NET technology is a more desirable solution than Java because of its 

language interoperability. Use of FPGA reduces the design costs since they are cheaper 

than ASICs in addition to providing reconfigurablity. This work concerns with improving 

the performance of .NET systems and the results show that a hardware implementation 

on an FPGA, as had been discussed in this thesis, indeed accelerates those programs that 

are intended to run on the .NET framework. 

Future enhancements can be done in 4 stages to make the existing design perform 

better. Firstly object modeling instructions as specified in the .NET specifications [10] 

can be implemented in the software. This can be further extended so that even these 

object modeling instructions can be implemented in hardware. In this case the subset of 

object modeling instructions must be chosen carefully such that it doesn’t produce too 

complex a hardware that may become a bottleneck in itself. The design can then be 

extended to perform better for specific embedded systems by optimizing specific features 

of the design such as the stack cache and extending the functional units to perform a 

extended set of operations specific to an embedded system. Finally, to make the system 

work consistently, a spill-fill handler must be added to handle stack overflow conditions. 
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A. APPENDIX 

 

A.1: THE XILINX EMBEDDED DEVELOPMENT KIT 

 

EDK is a series of software tools for designing embedded processor systems on 

programmable logic, and supports the IBM PowerPC™ hard processor core and the 

Xilinx® MicroBlaze™ soft processor core. Platform Studio™ is the graphical user 

interface technology that integrates all of the processes from design entry to design debug 

and verification.  

 

The Embedded Development Kit is distributed as a single media installable CD image. 

The components of the Xilinx® EDK are: 

• Hardware IP for the Xilinx embedded processors and its peripherals 

• Drivers, Libraries and a MicroKernel for Embedded Software Development 

• Platform Studio tools 

• Software Development Kit (Eclipse Based IDE) 

• GNU Compiler and Debugger for C development for MicroBlaze™ and PowerPC™ 

• Documentation 

• Sample projects 

The version used for the project is EDK 7.1. 

 

 

A.2: THE XILINX PLATFORM STUDIO (XPS) 

 

XPS is an integrated design environment (IDE) used to develop EDK-based system 

designs. To generate a simple hardware system for EDK-based designs using Xilinx® 

EDK 7.1 and Xilinx® ISE™ 7.1i EDK hardware involves assembling a system that 

contains a processor along with buses and peripherals, generating an HDL netlist, and 

implementing the design using ISE implementation tools to generate a bitstream.  

A snapshot of XPS is shown if in Figure A1. 

 



 

 

Figure A1: XPS in action 

DESIGN FLOW IN XPS  

 

The steps involved in creating a hardware system for EDK using XPS are as follows: 

1. Create a New XPS Project 

2. Select a Target Board 

3. Select the Processor to be Used 

4. Configure the Processor 

5. Configure IO Interfaces 

6. Specify Internal Peripheral Settings 

7. Specify Software Configuration 

8. View System Summary and Generate 

9. View Peripherals and Bus Settings 

10. Generate Bitstream 

11. Download Bitstream and Execute 



 

 
Figure A2:  Design Flow in XPS 

 

A.3: XILINX MICROPROCESSOR DEBUGGER (XMD) 

 

The Xilinx® Microprocessor Debugger (XMD) is a tool that facilitates debugging 

programs and verifying systems using the PowerPC™ 405GP (Virtex™-II Pro & 

Virtex™-4) or MicroBlaze™ microprocessors. You can use it to debug programs running 

on a hardware board, Cycle-accurate Instruction Set Simulator (ISS), or MicroBlaze 

Cycle-accurate Virtual Platform (VP) system. XMD provides a Tool Command 

Language (Tcl) interface. This interface can be used for command line control and 

debugging of the target as well as for running complex verification test scripts to test a 

complete system.  



 

 

Figure A3: XMD Command Shell 

XMD supports GNU Debugger (GDB) Remote TCP protocol to control 

debugging of a target. Some graphical debuggers use this interface for debugging, 

including PowerPC and MicroBlaze GDB (powerpc-eabi-gdb and mb-gdb) and Platform 

Studio™ SDK (Eclipse based Software IDE). In either case, the debugger connects to 

XMD running on the same computer or on a remote computer on the Network. XMD 

reads XMP, MHS, and MSS system files to better understand the hardware system on 

which the program is debugged. The information is used to perform memory range tests, 

determine MicroBlaze to Microprocessor Debug Module (MDM) connectivity for faster 

download speeds and other system actions. Figure A4 describes the possible 

configurations of XMD.  

 

Figure A4: XMD Targets 



 

A.4: DOCUMENTS THAT WERE USED AS A REFERENCE IN THE PROJECT 

 

A.4.1: THE PLATFORM STUDIO USER GUIDE 

 

EDK User Guide is a good place for first time users of EDK to understand the 

various design/debugging flows. Details about this document: 

� Describes basic example designs for MicroBlaze and PowerPC. The doc covers 

both designing Hardware system as well as the Software Design. 

� Usage of Xilinx MicroKernel and its components such as LibXilNet, LibXilMFS 

is discussed in the document. 

� Using the Xilinx Microprocessor Debugger (XMD) for downloading program, 

profiling and creation of SystemAce files is explained with examples. 

� Simulating a design using EDK tools and IP is discussed in the Simulation 

chapter 

� EDK Software design flow is described in detail. 

 

A.4.2: MICROBLAZE REFERENCE GUIDE 

 

This document provides information about the 32-bit soft processor, MicroBlaze, 

included in the Embedded Processor Development Kit (EDK). The document is meant as 

a guide to the MicroBlaze hardware and software architecture. 

This manual discusses the following topics specific to MicroBlaze soft processor: 

� Core Architecture 

� Bus Interfaces and Endianness 

� Application Binary Interface 

� Instruction Set Architecture 

 

A.4.3: TOOLS AND IP REFERENCE GUIDES 

 

Reference guides include detailed documents which explain 

� Tool options and capabilities. 

� Library and driver API and usage. 



 

� Processor IP Datasheets 

� User Core Templates usage and example systems. 

 

A.4.4: EMBEDDED SYSTEMS TOOLS GUIDE 

 

� Describes the Embedded Software Tools (EST) flow. 

� Describes all the tools provided with EDK such as Library Generator, Platform 

Generator, GNU compiler framework, GNU debugger, Xilinx MicroProcessor 

Debugger, Simulation Generator and the Xilinx Platform Studio. 

 

A.4.5: PLATFORM SPECIFICATION FORMAT 

 

� Describes the Microprocessor Hardware Specification (MHS) format and the 

Platform Generator infrastructure for embedded processor peripheral definitions: 

the Microprocessor Peripheral Definition (MPD) format. 

� Describes the MicroProcessor Driver Definition (MDD), MicroProcessor Library 

Defintion (MLD) and Microprocessor Software Specification (MSS) format. 

� OS and Libraries Reference Guide 

� Describes the software libraries available for Xilinx Embedded Processors. The 

libraries include the Xilinx C library (libXil), the math library (libm), the Xilinx 

file support functions (libXil File), the Xilinx memory mapped file system (libXil 

MFS), the Xilinx networking support (libXil Net), the Xilinx device drivers 

(libXil Driver) and the Xilinx Standalone Board Support Package (BSP). 

 

A.4.6: DRIVER REFERENCE GUIDE 

 

� The libraries reference guide describes the overall philosophy and how the drivers 

can be hooked up in EDK designs. The drivers reference guide describes each 

driver delivered by the Embedded Development Kit in complete details. 

 



 

A.4.7: PROCESSOR IP REFERENCE GUIDE 

� Describes the usage of On-chip Peripheral Bus (OPB) and the IBM Processor 

Local Bus (PLB) is used in Xilinx FPGAs. 

� Provides the design specification for all the processor IP, provided with the EDK. 

 

A.5 INTERNALS OF THE .NET ARCHITECTURE 

 

INTRODUCTION 

 

The Common Language Environment (CLR) is the run-time environment of the 

.NET Common Language Infrastructure (CLI). It manages the execution of code and 

provides services that make the development process easier. The intermediate code form 

of the .NET system is called Common Intermediate Language (CIL) or the Microsoft 

Intermediate language (MSIL). As other virtual machines, the CLR too is stack-based 

machine. 

 

THE ARCHITECTURE 

 

The .NET CLR is a stack based machine. All operations are done on the stack. 

The local variables, the arguments that are passed back and forth between functions, the 

temporary evaluations etc. all reside on the stack. The .NET CLR is a complex machine 

and it provides a lot of high-level abstractions as primitives. For example, there is support 

of events, classes, arrays, delegates etc. even at the MSIL level. The CLR manages to 

provide such good features, thanks to the heavy amount of metadata that gets packed with 

a .NET executable.  

 

THE COMPILATION PROCESS 

 

.NET boasts of the feature of language interoperability. This is accomplished by 

having a VM kind of a setup. All the HLL programs get translated to an intermediate 

form called a .NET assembly. An assembly can either be a DLL or an executable. The 

executable assemblies are Portable Executable (PE) files. The MSIL instructions are 

encoded in these assemblies, which are then interpreted by the CLR. A heavy amount of 



 

metadata gets packed with an assembly, which is made use of by the CLR during the 

interpretation stage. The PE and the metadata play a pivotal role in the .NET framework 

and are explained in [1]. We now proceed to give a general overview of the PE format. 

 

The Win32 PE 

 

The file format for .NET executables is a strict extension of the current Portable 

Executable (PE) File Format. This extended PE format enables the operating system to 

recognize runtime images, accommodates code emitted as CIL or native code, and 

accommodates runtime metadata as an integral part of the emitted code. The PE format 

would require pages of explanation. Loads of documentation is already available. We 

describe here only those parts of the PE file that are relevant to the work.  

The figure below provides a high-level view of the CLI file format. All runtime 

images contain the following: 

 
 

Figure A5: CLI File Format 

 

•  PE headers, with specific guidelines on how field values should be set in a runtime file. 

•  A CLI header that contains all of the runtime specific data entries.  

• The sections that contain the actual data as described by the headers, including 

imports/exports, data, and code. 

The PE optional header, which forms a part of the PE header, contains constructs 

called directories. The optional header data directories give the address and size of 

several tables that appear in the sections of the PE file. Each data directory entry contains 

the Relative Virtual Address (the offset of a data item from base address of the file) and 



 

Size of the structure it describes, in that order. The CLI header is found using CLI Header 

directory entry in the PE header. The CLI header in turn contains the address and sizes of 

the runtime data i.e. for metadata and for CIL in the rest of the image.  

 

METADATA – THE HEART OF A .NET ASSEMBLY 

 

Many of .NET’s high level and attractive features are made possible only because 

of the massive magnitude of the metadata that gets packed with a .NET assembly. The 

metadata is organised inside a .NET assembly in two forms: tables and heaps.  

 

Heaps 

 

There are five possible types of heaps:  

� String: Metadata preserves name strings, as created by a compiler or code generator, 

unchanged. These strings are stored in this table. 

� Blob: Contains indices for various table entries 

� UserString: Contains the Unicode string constants used in the source file. 

� GUID: Globally Unique IDentifier, a 16-byte long number typically displayed using 

its hexadecimal encoding. While the other three heaps are byte arrays, this heap is an 

array of 16-bit entries. 

� #~ (The Tilde stream): points to the physical representation of a set of tables. 

 

Tables 

 

Each entry in each column of each table is either a constant or an index. Constants 

are either literal values or bitmasks. Most bitmasks are 2 bytes wide but there are a few 

that are 4 bytes. Each index is either 2 or 4 bytes wide. The index points into the same or 

another table, or into one of the four heaps. The size of each index column in a table is 

only made 4 bytes if it needs to be for that particular module. So, if a particular column 

indexes a table, or tables, whose highest row number fits in a 2-byte value, the indexer 

column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows, 

an indexer of that table will be 4 bytes wide. Indexes to tables begin at 1.  

 


