

IMPLEMENTATION OF THE .NET CLR ON

FPGAs

By

Srinath S

Srinivasan T

Vidyabhushan M

A Project Report submitted to the

FACULTY OF INFORMATION AND

COMMUNICATION ENGINEERING

in partial fulfillment of the award

of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING, GUINDY

ANNA UNIVERSITY

CHENNAI – 600 025

APRIL 2006

CERTIFICATE

Certified that this project report titled “Implementation of the .NET CLR on

FPGAs” is the bona fide work of Srinath S. (20022190), Srinivasan T. (20022191) and

Vidyabhushan M. (20022209) who carried out the project under my supervision.

Certified further, that to the best of my knowledge the work reported herein does not

form part of any other thesis or dissertations on the basis of which a degree or award was

conferred on an earlier occasion on these or any other candidates.

Dr. P. NARAYANASAMY, Dr. RANJANI

PARTHASARATHI,

Head of the department, Professor,

Department of Computer Department of Computer

Science and Engineering, Science and Engineering,

College of Engineering, Guindy, College of Engineering, Guindy,

Anna University, Anna University,

Chennai - 600025 Chennai - 600025

ACKNOWLEDGEMENTS

We would like to convey our gratitude to Dr. P. Narayanasamy, Head of the

Department, Department of Computer Science and Engineering, College of Engineering,

Guindy, Anna University, Chennai for providing us the opportunity and infrastructure to

carry out this project.

We express our sincere gratitude to our guide Dr. Ranjani Parthasarathi, Professor,

Department of Computer Science and Engineering, College of Engineering, Guindy,

Anna University, Chennai for her invaluable support, guidance and encouragement for

the successful completion of this project. Her knowledge, her attitude, her commitment

and her spirit have inspired and enlightened us.

At this juncture, we fondly remember, with gratitude, our .NET guru Late Mr.

Ramasubramanian, who initiated us into the field of .NET.

We take this opportunity to thank Mr. Shanmugam of our Department for extending

technical support.

We would like to thank Xilinx Inc. for providing us with equipments for our project.

We would also like to thank our seniors at Xilinx namely Mr. Siva Velusamy, Mr.

Navaneethan Sundaramoorthy, Mr. Vasanth Asokan and Mr. Raj Kumar

Nagarajan for extending their support throughout the project.

And last, but not the least, we wish to thank our parents and family members for

bearing with us throughout the project period and for having created the opportunity to do

this course in such a prestigious institution.

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO

ABSTRACT (ENGLISH) i

ABSTRACT (TAMIL) ii

LIST OF FIGURES iii

LIST OF ABBREVIATIONS iv

1 INTRODUCTION 1

1.1 Introduction to Virtual Machines 1

1.2 Introduction to .NET 1

1.3 .NET in Embedded Systems 2

1.4 Proposed Scheme 3

1.5 Introduction to FPGAs 3

1.6 Existing techniques to improve the 4

performance of Virtual Machines

1.6.1 Methodologies adopted to improve 5

performance of JVM.

1.6.2 Differences in design issues of 6

CLR and JVM

1.7 Organization of the thesis 6

2 LITERATURE SURVEY 7

2.1 JVM implementation FPGAs 7

2.2 The Pico Java Processor 7

2.3 Hardware partition in a Co - Designed JVM 8

2.4 Register Stack Architecture in Intel 8

Itanium Processors

2.5 Plataforma .NET 9

3 DESIGN 10

3.1 Overall Design 10

3.1.1 Co-Design Methodology 10

3.1.2 Components of the System 11

3.1.2.1 MicroBlaze SCP 12

3.1.2.2 Custom Hardware 12

3.1.2.3 Processor and Custom 13

Hardware Interface

3.2 Detailed Design 15

3.2.1 Software Design 15

3.2.2 Hardware Design 17

3.2.2.1 Control Unit 18

3.2.2.2 Hardware Stack 19

4 IMPLEMENTATION 21

4.1 Software Implementation 21

4.1.1 Boot Strapping 21

4.1.2 Metadata Initialization 22

4.1.3 Core CLR Loop 24

4.2 Hardware Implementation 25

4.2.1 Control Unit 26

4.2.2 Stack Unit 27

4.2.3 Functional Units 28

4.3 Interface Access 29

4.3.1 FSL Write Operation 29

4.3.2 FSL Read Operation 30

5 RESULTS 31

5.1 The System 31

5.2 Hyper Terminal Settings 31

5.3 Test Cases 31

5.4 Profiling 37

6 CONCLUSION & FUTURE WORK 40

7 REFERENCES 41

A APPENDIX 43

A.1 Xilinx Embedded Development Kit (v7.1i) 43

A.2 Xilinx Platform Studio 7.1i 43

A.3 Xilinx Microprocessor Debugger (XMD) 45

A.4 Tools and reference guides 47

A.5 Internals of the .NET Architecture 49

ABSTRACT

(English)

Microsoft's .NET platform is an innovative and promising technology to achieve true

interoperability between programming languages, and true portability over different

hardware and operating system platforms. A .NET embedded processor has been

designed on FPGAs that improves the performance of the .NET Common Language

Runtime (CLR). The flexibility of FPGAs has been exploited to accelerate programs

targeted to run on .NET virtual machine by considering a constricted set of the .NET

instruction set architecture. The Turing complete set of instructions has been

implemented in hardware. A software-hardware co-design approach has been adopted

to implement the design. The conclusion is that the performance of a hardware-

software co-designed methodology is better than a purely software approach.

LIST OF FIGURES
FIGURE NO TITLE PAGE NO

3.1 Frequency of CIL instructions encountered 10

in benchmark programs.

3.2 Flowchart for co-designed approach 11

3.3. Overall Design of the System 12

3.4. Flow Diagram for Method Invocation 17

3.5. Hardware Design 18

4.1. Entry Point Token Format 22

4.2. Detailed Hardware Design 26

4.3. State Diagram of the hardware system 28

5.1. Snapshot depicting the initialization of the

main method 34

5.2. Snapshot depicting the call of method

function (int, int) 35

5.3. Snapshot depicting the return of the method

and handling of branch condition 35

5.4 Snapshot depicting the execution of unconditional

branch instruction 36

5.5. Snapshot depicting the end of execution of

 the program 36

5.6. Snapshot of the execution time of Pure

Software Solution 37

5.7. Snapshot of the exec time of Co-designed Solution 38

5.8. Profiling results 39

A1. XPS in action 44

A2. Design Flow in XPS 45

A3. XMD Command Shell 46

A4. XMD Targets 46

A5. CLI File Format 50

LIST OF ABBREVIATIONS

1. VM – Virtual Machines

2. FPGAs – Field Programmable Gate Arrays

3. CLR – Common Language Runtime

4. MSIL – Microsoft Intermediate Language

5. CIL – Common Intermediate Language

6. CLI – Common Language Infrastructure

7. ASICs – Application Specific Integrated Circuits

8. PLDs – Programmable Logic Devices

9. JVM – Java Virtual Machine

10. ISA – Instruction Set Architecture

11. AOT Compilation – Ahead of time Compilation

12. JIT Compilation – Just In Time Compilation

13. RVA – Relative Virtual Address

14. PE – Portable Executable

15. TOS – Top of Stack

16. TOS2 – Second element from the top of stack

17. FSL – Fast Simplex Link

18. JTAG – Joint Test Action Group

19. VHDL – Very high speed integrated circuit Hardware Description Language

20. ELF – Executable and Linking Format

21. FIFO – First In First Out

22. SCP – Soft-Core Processor

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO VIRTUAL MACHINES

The field of virtual machines (VM) and language-independent and platform-

independent execution environments has always fascinated language designers and

implementers for a long time. Such implementations have a lot of advantages over the

native compilers strategy, the main objective of adopting such an approach being

portability [1].

Portability is achieved by having the high level code translated to an intermediate

form, which a system, usually called the Virtual Machine (VM), translates to the native

code of the target architecture. The virtual machine is a software implementation that lies

between the application and the operating system. Or in other words, the VM can be

thought of as a program that can run other programs. The intermediate form acts as a

means of communication between the high level front end and the low level back end.

One of the ways of realizing such a virtual Machine system, and the widely adopted one,

is by modeling the VM as a stack. The reason for adopting a stack-based architecture is

that, any virtual machine, which aims to achieve portability across platforms, cannot

make assumptions on the underlying architecture. A stack, on the other hand can offer

higher level abstractions and abstract actions can be specified on a stack (push, pop, add-

top-two etc.). Thus, it becomes desirable to model VMs as abstract stack machines. The

next section gives an introduction to the .NET environment, which has a VM as one of its

components.

1.2 INTRODUCTION TO .NET

The name “.NET” is misleading. The name likely comes from Microsoft’s

original idea of web services. However, .NET is much more than that. It is a framework

that includes an execution engine (i.e., a virtual machine) to allow applications to be

platform-independent (like Java). Unlike Java, it is language independent. Programs can

be written in any .NET-supported language. The Common Language Environment (CLR)

is the run-time environment of the .NET framework. It manages the execution of code

and provides services that make the development process easier. The intermediate code

form of the .NET system is called Common Intermediate Language (CIL) or the

Microsoft Intermediate language (MSIL). A detailed review of the .NET architecture has

been provided in Appendix A5.

1.3 .NET in EMBEDDED SYSTEMS

An exponential growth as been witnessed in the field of embedded systems,

spawning the growth of embedded devices on a large scale. With the Internet boom, more

and more embedded devices are being designed through which Internet access is

possible. As this growth continues the devices are becoming more intelligent and

complex than ever. So there is a significant increase in the amount of software that has to

be written for such devices. Hence from a programmer’s point of view it would be

helpful if they can have a level of abstraction between the underlying hardware and the

software, which is to be written so that they can concentrate more on the code rather than

focusing on the low-level details of the embedded device. .NET provides this abstraction

by helping a programmer concentrate on the implementation rather than focusing on the

low level hardware details. Thus .NET technology may truly enable the embedded system

revolution by providing a flexible and common platform.

But .NET in its present form cannot be directly used for programming embedded

devices due to several reasons. One among them is that .NET programs generally run in

an interpreted environment where the underlying Virtual Machine (VM), the Common

Language Runtime (CLR) interprets each .NET instruction. This means that the VM

translates the program into machine instructions that the processor in the device can

execute. But such an interpreted execution takes time to complete. But time for execution

is directly proportional to power consumption in an embedded system. So we cannot

prefer such a purely interpreted embedded system since it consumes more power. So it is

imperative for the programmer to write programs that are power efficient, i.e. they must

consume less time to get executed. Another reason why .NET in the present form cannot

be used on embedded devices is that the size of the underlying VM (the CLR) is too large

to be loaded into embedded devices, as memory is a constraint in these devices.

1.4 PROPOSED SCHEME

The very common solution to build any general VM is to have it as an interpreter

and/or a JIT compiler or an AOT compiler. This kind of a software solution is relatively

easier to build and cost effective, but it compromises on the performance. Moreover it

also suffers from sequential execution. Pure hardware implementations are possible but

the price they demand is flexibility. Moreover, complexity and cost are high for such an

approach.

The objective is to exploit the advantages of both these approaches by employing

both of them. In other words, a co-design sort of an approach to achieve a better

negotiation between cost and performance is proposed. Also, with this paradigm lies

flexibility too. Using FPGA provides a development environment for easily shifting the

partitioning between hardware and software to arrive at an optimized solution in an

iterative fashion. Hence a co-designed strategy is adopted to design the CLR.

To counter the huge size of CLR we have to consider a subset of the .NET ISA

and to write a CLR which supports this subset. The subset has to be chosen in such a way

that instructions in this subset help us to program the embedded devices without any

constraints. Such a minimal .NET processor has been designed which can execute a

subset of .NET ISA efficiently by exploiting the inherent features of FPGAs.

1.5 INTRODUCTION TO FPGAs

Field Programmable Gate Arrays (FPGAs) are an array of logic gates that can be

hardware-programmed to fulfill user-specified tasks. In this way, one can devise special

purpose functional units that may be very efficient for some limited task. It is also

possible to customize the entire instruction processor at compile time or at run time. As

FPGAs can be reconfigured dynamically, be it only 100 to 1,000 times per second, it is

possible to optimize them for more complex special tasks at speeds that are higher than

what can be achieved with general purpose processors. An FPGA is similar to a

Programmable Logic Device (PLD) but whereas PLDs are generally limited to hundreds

of gates, FPGAs support thousands of gates. The underlying simplicity of FPGAs is that

any circuit can be emulated with the available gates, and the user has to simply program

the board by loading a bitstream, which instructs the board to configure itself.

FPGAs fill a gap between discrete logic and the smaller PLDs on the low end of

the complexity scale and costly custom ASICs on the high end. Since they can be

programmed, FPGAs can be used to design hardware systems by minimizing costs

compared to ASICs as well as provide sufficient functionality to develop complex

systems. They consist of an array of logic blocks that are configured using software.

Programmable I/O blocks surround these logic blocks. Both are connected by

programmable interconnects (Fig. 1). The programming technology in an FPGA

determines the type of basic logic cell and the interconnect scheme. In turn, the logic

cells and interconnection scheme determine the design of the input and output circuits as

well as and memories are afforded by support for various single ended and differential

I/O standards. Also found on today’s FPGAs are system-building resources such as high

speed serial I/Os, arithmetic modules, embedded processors, and large amounts of

memory. Initially seen as a vehicle for rapid prototyping and emulation systems, FPGAs

have spread into a host of applications. They were once too simple, and too costly, for

anything but small-volume production. Now, with the advent of much larger devices and

decline of per-part costs, FPGA’s are off the prototyping bench and onto production.

1.6 EXISTING TECHNIQUES TO IMPROVE PERFORMANCE OF VIRTUAL

MACHINES

Many advances have been made in order to have a faster execution environment.

A few case studies are presented in this section that show how improvements of Java

Virtual Machines (JVM) have been accomplished with the help of hardware and

software. The differences between the JVM and CLR are also pointed out and it can be

inferred that issues that are applicable for a hardware design of JVM cannot be applied

for the hardware design of CLR.

1.6.1 METHODOLOGIES ADOPTED TO IMPROVE PERFORMANCE OF JVM

One way to achieve a faster runtime is by having dedicated Java Coprocessors,

which can help the host processor execute Java code better, faster and in an efficient

manner. Some examples are JVXtreme, JStar and Xpresso [2]. Embedded systems and

real time systems, which execute Java Code, adopt this kind of a solution. Although this

idea seems to be attractive, it is necessary to have a GPP running on the target machine.

Moreover, this increases the cost too.

The other extreme is to have specific processors, which can directly execute Java

Bytecodes. These processors are called Java Processors [3]. The beauty of these

processors is that the very ISA of them is the JVM ISA, meaning that they work on

bytecodes directly and run them directly on hardware, thereby achieving speedier

execution. Moreover additional and time-consuming tasks of interpretation and JIT

compilation are also done away with. Thus the performance benefits that can be reaped

from such an approach are many compared to coprocessor technology.

Another way to speed Java execution on a standard RISC architecture is to extend

the architecture itself, to directly execute Java instructions. ARM designers added a new

Java instruction set to the classic ARM architecture [3]. The Java ISA is executed in a

Java mode, which is entered on a branch. In the Java mode, the CPU executes Java byte

code instructions. There have also been complete FPGA implementations of JVM. One

such work is the implementation of JVM on FPGAs [4] that draws its inspiration from

Sun’s Pico Java Processor.

So, it is evident that the JVM has been given much attention by the embedded

systems group and reconfigurable computing groups. .NET on the other hand, is an

upcoming technology and not so much work has been done as regards its embedded

development. Although a chip that is capable of running a very restricted subset of the

CLR is already out in the markets, its scope of application is pretty narrow. So in this

project a system that can have a broader application domain but with features that might

typically be required by an embedded system has been built.

1.6.2 DIFFERENCES IN THE DESIGN ISSUES OF CLR AND JVM

Although the CLR and JVM are both stack-based architectures and share a few

common features, there are a few vital differences between them. A few of those

differences are presented here.

First of all, the JVM is so designed to run only Java code efficiently. Although it’s

quite possible to make the JVM coexist with other languages, the JVM is necessarily a

sub-optimal multi-language platform [5, 6]; whereas, the .NET framework and the CLR

has been designed from the ground up having language interoperability in mind. The

assembly language of the CLR is an object-oriented assembly and includes generic

instructions, but the JVM ISA has got no generic instructions. Another difference

between the JVM and the CLR is that Java doesn’t provide provisions for writing native

code or type-unsafe features of typical programming languages (native pointers etc). But

the .NET framework differentiates between managed and unmanaged code. The

unmanaged code is capable of executing code, which can run out of the vigilance of the

CLR. .NET adheres to the Virtual Object System (VOS). Value types can only be

primitives in Java, where as the .NET supports structs and unions. CLR includes

provisions for automatic boxing and unboxing, whereas JVM doesn’t. The parameter

passing conventions differ in Java and .NET.

Thus the various design issues and parameters are quite different for the JVM and

the CLR. Those that apply for the JVM do not apply for the CLR, hence the need for a

CLR specific design.

1.7 ORGANIZATION OF THE THESIS

 The outline of this thesis is as follows. Chapter 2 discusses the works that have

taken place in the field of reconfigurable computing and virtual machines. Chapter 3

describes the high-level and detailed design of the system. Chapter 4 explains the

implementation details followed by the Chapter 5 that discusses the results obtained.

Chapter 6 provides conclusion and the future work.

CHAPTER 2

LITERATURE SURVEY

This chapter describes the existing work that have taken place in the field of

reconfigurable computing and virtual machines and the approaches that have so far been

adopted to improve the performance of virtual machines.

2.1 JVM IMPLEMENTATION OF FPGAs

 Nagendra Kumar et al have implemented Java Virtual Machine (JVM) on FPGAs

[4]. In this work, a Java microprocessor core using FPGA technology is being

experimented with and its preliminary functionality is tested and verified. The processor

core eliminates the need for commonly used interpreters, JIT compilers and their

overhead. The core accelerates the JVM runtime environment. It executes the most

commonly used instructions in hardware. Complex instructions are micro coded, with the

most complex ones trapped and emulated in software. This work also gives an idea of a

“stack-cache” which is a new design methodology based on PicoJava Processor to

accelerate the performance of the core.

2.2 THE PICOJAVA PROCESSOR

Olayinka Olabinjo et al offer insight into the hardware processor design of a

stack-processor [2]. Applications written in Java are compiled to an intermediate

representation before being sent to a client over the Internet or another network. Any

processor and operating system combination that has an implementation of the Java

Virtual Machine, either embedded in the operating system or in a browser, can execute

these Java applications and produce correct results. This virtual machine comprises a

specification of a file format for the executable (called a class file), an instruction set

(Java byte codes), and other features such as threads and garbage collection. The main

factors that influence this design are portability, security, code size, and the ease of

writing an interpreter or a JIT compiler for a target processor and operating system.

2.3 IMPLEMENTATION OF HARDWARE PARTITION ON A CO-DESIGNED

JVM

Hejun Ma et al examine the various aspects of a development environment, the

effects the environment’s characteristics have on the hardware design and the factors that

must be considered when making any design decisions [7]. The design of the hardware

portion of the co-designed virtual machine is constrained by the target environment. The

focus is to target desktop workstation that has an FPGA available through a local bus.

Due to the target environment, there are several implications to the requirements of the

hardware design, the primary one being the availability of resources. The other major

design consideration is the Communication between the FPGA and the Host processor,

which needs to be quick and efficient. The size and speed of the memory that is

accessible also influences the design. All of the above mentioned factors contribute to the

development environment and its suitability for a virtual machine.

It is clear that a development environment suitable for one virtual machine may

not be suitable for another. The more instructions that can be implemented in hardware

the better, since the overall purpose of the co-design is to obtain faster execution through

pipelining the fetch-decode-execute loop.

2.4 REGISTER STACK ARCHITECTURE IN INTEL ITANIUM PROCESSORS

Scott Townsend et al discuss about the register stack architecture of the Itanium

Intel Processors and its working, functionality and performance advantages [8]. A feature

of processors in the Itanium processor family is the Register Stack Engine (RSE). The

RSE is a hardware implementation inside the processor that helps a subset of the General

Registers (GRs) implements the register stack by handling register overflows. Its main

function is to act like the traditional memory stack, except much faster. Without the RSE

implementation, code in a program calls a function, puts the parameters to pass to the

function on the stack (in memory), and the receiving function must retrieve them from

the stack into registers to manipulate them. But in the Itanium processor family, the

register stack enables extremely fast switching of the function call process with little to

no overhead unlike Traditional Processors. Because of this there is a dramatic

performance gain over the normal stack based machine.

2.5 PLATAFORMA .NET

The aim of this whitepaper is to analyze the portability of the .NET platform and

the Internet revolution into the world of embedded systems [9]. The final goal would be

to devise a hardware implementation of the .NET CLR so that CLI byte-code could be

run natively. The particular objectives are

• Studying the JIT compilation for embedded processors, including high

performance processors like ARM with extensive OS support, as well as

processors used in rapid prototyping systems with small or non-existing OS

support.

• Modifying the architecture of a given processor to improve execution of native

code coming from JIT compilation of CLI.

• Studying the viability of a processor that partially (or completely) implements the

.NET CLR. Given the complexity of the VOS object system and the .NET virtual

machine, it is not intended, at first, to cover the entire CLR specification. Instead,

a significant subset will be chosen, that could be used to run simple programs and

interact with hardware devices in an embedded environment.

CHAPTER 3

DESIGN

This chapter discusses the design methodology adopted to construct the hardware

and the software components of the project. First the overall methodology adopted is

explained followed by the detailed design of the hardware and software components.

3.1 OVERALL DESIGN

3.1.1 THE CO-DESIGN METHODOLOGY

This methodology is adopted to exploit advantages of both Hardware and

software implementations of VM. The first step is identifying those MSIL instructions

that can be implemented on hardware. To identify which part of the CLR goes into the

hardware and which part goes into the software a static profiling was done on benchmark

programs like Splunc, FFT and Ray Tracer. Four class of instructions namely arithmetic

instructions(A), loads for local variables(B), loads for constants(C) and object handling

instructions(D) were identified and their frequency of occurrences were also found out..

The results show that all these four classes of instructions share the majority of the total

instructions with almost equal percentage of occurrence and hence can be directly

implemented in hardware.

Figure 3.1: Frequency of CIL instructions encountered in benchmark programs.

The next step is to actually design the hardware for those identified instructions

and porting them onto hardware, each instruction at a time. The system is then evaluated

for performance and the above process is iterated by porting new instructions until the

performance achieved is optimal. The flowchart (figure 3.2) depicts this process.

Figure 3.2: Flowchart for co-designed approach

The co-design methodology solves two purposes. Complex features of the CLR

like object orientation, exception handling that are too complex to be run on hardware

can be performed in software while simple accelerate-able code like loads and stores,

arithmetic manipulations which lend themselves to parallelization can be implemented

directly in hardware.

3.1.2 COMPONENTS OF THE SYSTEM

The following figure (Figure 3.3) below depicts the overall system. The basic

components of the system are

• MicroBlaze Softcore Processor and main memory

• Custom Hardware encompassing the functional units and the 32 entry stack

• Processor and Custom Hardware Interface – The FSL Interface

Figure 3.3: Overall Design of the System

3.1.2.1 MICROBLAZE SOFTCORE PROCESSOR

The MicroBlaze embedded soft core is a reduced instruction set computer (RISC)

optimized for implementation on Xilinx field programmable gate arrays (FPGAs). The

MicroBlaze embedded soft core is highly configurable, allowing users to select a specific

set of features required by their design. This is a 300MHz 32-bit big-endian processor.

The processor’s fixed feature set includes the following:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline

3.1.2.2 CUSTOM HARDWARE

Configured Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that

implement logic plus storage elements used as flip-flops or latches. These CLBs are

utilized to design the custom hardware, which can either be a stack or an adder or a shift

barrel multiplier to perform various required operations. The custom hardware primarily

comprises of three components, namely

• A 32-entry Hardware Stack

• Control Unit

• Configured Functional Units

3.1.2.3 PROCESSOR AND CUSTOM HARDWARE INTERFACE

The Processor-Custom Hardware communication is achieved with the help of an

existing Fast Simplex Link (FSL) interface which has been provided by Xilinx for

communication with low latency between the hardware and the softcore processor. FSL

is a unidirectional point-to-point communication channel bus used to perform fast

communication between any two design-elements on the FPGA when implementing an

interface to the FSL bus. Up to 8 master and slave FSL interfaces are available on the

Xilinx MicroBlaze soft processor. These existing interfaces are used to transfer data to

and from the register file on the processor to hardware running on the FPGA. Following

are the features of FSL.

• Implements a unidirectional point to point FIFO-based communication

• Provide mechanism for unshared and non-arbitrated communication

mechanism. This can be used for fast transfer of data words between master

and slave implementing the FSL interface

• Provides an extra control bit for annotating data being transmitted. This

control bit can be used by the slave- side interface for multiple purposes.

• FIFO depths can be as low as 1 and as high as 8K.

• Supports both synchronous and asynchronous FIFO modes. This allows the

master and slave side of the FSL to clock at different rates.

FSL has I/O signals that must be activated by the hardware. These signals instruct

how the data transfer happens between the softcore and the hardware.

The signals can be split into 3 categories. The first category of signals control the

FSL bus while the next two categories refer to the signals that control the master and

slave peripherals connected to the FSL bus.

3.1.2.3.1 SIGNALS THAT CONTROL THE FSL BUS

• FSL_CLK

This is the input clock to the FSL bus when used in the synchronous FIFO

mode. The FSL_CLK is used as the clock for both the master and slave

interfaces.

• FSL_RST

Output reset signal generated by the FSL reset logic. Any peripherals

connected to the FSL bus may use this reset signal to operate the

peripheral reset.

• FSL_FULL

Indicates FSL buffer is full

• FSL_HASDATA

Indicates FSL buffer has data

3.1.2.3.2 SIGNALS THAT CONTROL THE MASTER AND SLAVE

PERIPHERALS CONNECTED TO THE FSL BUS

• FSL_M_CLK/FSL_S_CLK

This port provides the input clock to the master or slave interface of the

FSL bus when used in the asynchronous FIFO mode.

• FSL_M_DATA/FSL_S_DATA

The data input to the master interface of the FSL bus and output to the

slave interface of the FSL bus.

• FSL_M_CONTROL/FSL_S_CONTROL

Single bit control signal that is propagated along with the data at every

clock edge by both the master and the slave.

• FSL_M_WRITE

Input signal that controls the write enable signal of the master interface of

the FIFO. When set to ’1’, the values of FSL_M_Data and

FSL_M_Control are pushed into the FIFO on a rising clock edge

• FSL_S_READ

Input signal on the slave interface that controls the read acknowledge

signal of the FIFO. When set to ’1’, the values of FSL_S_Data and

FSL_S_Control are popped from the FIFO on a rising clock edge

• FSL_M_FULL

Output signal on the master interface of the FIFO indicating that the FIFO

is full.

• FSL_S_EXISTS

Output signal on the slave interface indicating that FIFO contains valid

data

3.2 DETAILED DESIGN

The approach that has been adopted here is similar to a classical five-stage

pipeline. The software part acts as a fetch and the decode unit, while the hardware part

functions as an execute and write unit. The following sections explain the software,

hardware and the interface design of the system.

3.2.1 SOFTWARE DESIGN

CLR engine, the software executor, forms the software partition and is

responsible for the execution of CIL code. This engine is loaded inside the MicroBlaze

softcore processor. After getting invoked, the CLR engine first loads the assembly (a

standalone executable, similar to class file in Java) into the instruction buffer. This

executable is referred to as a portable executable (PE). It’s worth noting here that we are

running on a memory-restricted environment, in which we don’t have the provision of

loading very large assemblies. The memory needed, is necessarily a bottleneck. The CLR

engine’s core can be roughly portrayed by a large switch-case running in an infinite loop,

as shown in the figure given below.

while(moreInstructions())
{

switch(next_instruction())
{
case ADD:

doAdd();
break;

...

...
case PUSH:

doPush();
break;

}
}

The code written above is very similar to the software VM. More sophisticated

techniques such as JIT or AOT are not employed here because a few of the instructions

are to be implemented directly in hardware.

So when a .NET PE is given as the input to the CLR Engine, the program entry

point is identified using the EntryPointToken present in the PE. Control information or

the metadata information is embedded in the PE in the form of streams and tables. Each

PE can have up to 43 tables and five streams. One such table is the MethodDef Table,

which has information about the methods in the program. A row in the MethodDef table

is indexed and the MethodRVA, which is the relative virtual address of the method to be

executed is found. Next the method signature is identified. Once this is done we jump to

the MethodRVA and read the Method Header. Method Header is classified into FAT

Header and Tiny Header. Tiny Header is used incase the method has no local variables

and arguments. In all other cases the FAT Header will be present. In the FAT header the

LocalVarSigToken that will give us information about the number of local variables and

type of the variables needed for this method is read. This process of initializing the

metadata is explained in figure 3.4. The figure also explains how the flow of a method

invocation takes place.

Figure 3.4: Flow Diagram for Method Invocation

The local variables and arguments of a method are initialized in the stack after

which the CLR core gets executed. Each CIL instruction is read from the method body.

Once the software engine decodes the instructions, the hardware system is alerted with

the type of operation to be performed. This is performed by writing the interface with the

opcode of the instruction read. The interface takes care of writing this value to the control

unit in the hardware. The exception to this case are the load instructions where the data to

be loaded is also written to the interface. The interface is configured to read and write

both the control and data register in the hardware. Since the .NET is a stack-based

machine, each CIL instruction manipulates the stack only. So the operands needed by an

instruction are present either in the stack or in the data register of the hardware.

Effectively the hardware becomes a self-contained entity with the software periodically

alerting the hardware with the kind of operation that the hardware has to perform.

3.2.2 HARDWARE DESIGN

 The hardware system consists of a stack, a control unit and functional units for

performing operations. This section explains each of them in detail. These components

are shown in figure 3.5.

Figure 3.5: Hardware Design

3.2.2.1CONTROL UNIT

The following are the components of a control unit.

• Stack Pointer (SP)

An index into the stack that identifies the top of the stack

• ArgsStart - Argument Pointer

A pointer to the stack that identifies the start of arguments passed to a

method that is currently getting executed by the CLR engine.

• LocalsStart – Locals Pointer

A pointer to the stack that identifies the start of local variables passed to a

method that is currently executed by the CLR engine.

• Base Register

A register that contains the base address of either the local variables or

arguments passed to the function depending on the type of instruction

currently getting executed.

• Offset Register

A register that contains an index into the stack from the address in the base

register to access the corresponding local variable or the argument

• Control Register

This register contains the type of operation to be performed by the stack.

This register is written by the softcore processor to instruct the stack to

perform the required operation.

• Data Register

This register is written by the softcore processor. The value in this register

is then written onto the stack by the hardware. The stack reads the control

register and if it finds that the instruction is a load instruction then it reads

the data to be loaded from the data register. Hence it is necessary for the

software to write the data onto the data register by fetching it from the

executable if the instruction it encounters is a load instruction. The

exceptions are the load constants instructions which take the data based on

an opcode directly and not from the data register.

The control register contains an opcode that identifies the type of operation to be

done by the hardware whereas the data register has the data needed to fill the stack. When

the CLR engine identifies the operation to be performed it writes the control register

through the FSL link. Incase of push instructions the CLR engine writes the data to be

pushed onto the stack in the data register. The hardware identifies the type of operation to

be performed and if it finds that a push needs to be done it uses the data present in the

data register. Otherwise the hardware manipulates the elements of the stack. Base and

offset registers have been provided for the purpose of random access on the stack.

3.2.2.2 HARDWARE STACK

The hardware stack is a 32-entry stack and each entry in the stack is a 32-bit

register. The stack is modeled in lines of the Intel Itanium Processor [8]. It has been built

in such a way that various operations that need to be done on the stack can be done by

directly manipulating the stack entries, thereby preventing unnecessary pushes and pops.

To optimize stack accesses we have two registers (A and B) that contain the TOS

and TOS2 of the stack (where TOS stands for Top of Stack). These two registers are used

by the functional units to handle binary operations. These registers get loaded with the

top of stack by default and when changes are made in the stack. This design helps us in

saving time required to perform stack accesses.

Following are the operations that are implemented in Hardware

• Push, Pop, Dup

• Load Constants (makes up app. 40 % of the instructions in an executable.)

• Load/Store args

• Load/Store locals

• Binary Operations: Add, Sub, BitAnd, BitOr, BitXor, BitNot, Negate

• Signed Compare Instructions

• Signed Branches and jumps

Special mention is to be made on the branch instructions since they involve two-

way data transfer from the stack to the software and vice versa. The result of the branch

condition is intimated to the software, which uses this result to get the target instruction.

Load and store of local variables and arguments is done using the base and offset

registers, which are pointers to the stack. For load instructions the stack[base + offset] is

loaded onto the stack top and register A and B are appropriately changed while for store

instructions the contents of register A is stores onto stack[base + offset]. While the offset

register is initialized by the software, the base register is initialized with either the

ArgsStart or the LocalsStart based on the type of opcode by the hardware (i.e.)

BaseRegister <= LocalsStart if opcode is ldloc/stloc

BaseRegister <= ArgsStart if opcode is ldarg/starg.

CHAPTER 4

IMPLEMENTATION

This chapter discusses the detailed implementation of the hardware and software

components of the project. First the software implementation is explained in detail

followed by hardware implementation.

4.1 SOFTWARE IMPLEMENTATION – CLR ENGINE

 The CLR engine was implemented using C, which was compiled by the

MicroBlaze C Compiler (mb-gcc). The main functions of this phase are bootstrapping of

the .NET PE followed by metadata initialization. This is followed by the Core CLR loop

which does the fetching and decoding of each instruction.

4.1.1 BOOTSTRAPPING

 Initially, the .NET PE will be given as the input to the CLR engine. The binary

dump of the executable is statically included in the file. This results in eliminating

redundant disk accesses since the entire input is statically included in the input. All

information about executable is included in the form of tables and streams. So the first

step is to find out where the streams and tables are located in the executable. This is done

by the bootstrapping phase. The steps in this phase are

1. Reading the DOS header to find if the given file is a valid WIN32 executable.

2. Once this validity is done the code and the data segment sizes are read.

3. Next step is to read the entry point followed by the base address of the code

and the data section. These addresses are relative to the start of the executable

and are called as the Relative Virtual Address (RVA).

4. After getting the RVAs of the code and the data section we read the section

alignment values. Generally each section of the code is aligned to a 512-bit

boundary.

5. Next step is to read the CLR header RVA and the CLR Header size.

6. Then we jump to CLR header RVA to read the metadata RVA and metadata

size. Metadata RVA gives the information about where the tables and the

streams are located.

7. Once the metadata RVA is read, we read the entry point token. The format of

entry point token is shown below.

Figure 4.1: Entry Point Token Format

The entry point token serves in identifying the starting point of the execution.

Generally the starting points of execution can either be a method or another

assembly file. Current support has been offered for programs that have the

starting point of execution in the current file. The entry point token is a 4-byte

value that has the following information. The Most Significant Byte of the

entry point token is a table index while the remaining 3 bytes index into the

row of the table. The table that is indexed by the entry point token is the

Method table that contains information about all the methods in the table. To

identify which method is the starting point the remaining 3 bytes are used to

index into the method table. Another important job of bootstrapping is to find

the RVAs of all the streams that are present in the PE. So once the entry point

token and the starting method to be executed are identified the metadata is

initialized.

4.1.2 METADATA INITIALIZATION

 As mentioned earlier the metadata information is organized in the form of tables

and streams. The following are the data structures used to initialize the metadata.

Metadata
{

Int64 tables_bit_vector;//A bit vector indicating
 which tables are present

Int32 no_of_tables;
Int32 sorted_tables_bit_vector;
Int32 no_of_rows[64];//Rows in each table

}metadata;

This data structure stores the no of tables that are present in the PE. A maximum

of 43 tables can be present in the PE. A table bit vector that contains which of these 43

tables is present is also stored. This data structure also contains information regarding the

number of rows present in each of these 43 tables.

MethodDefEntry
{

Int32 RVA;//RVA of the current method
Int16 implFlags;
Int16 flags;
Int16 nameIndex;//Index into the string stream
Int16 sigIndex;//Index into the blob stream
Int16 paramIndex;//Index into the parameter

table.
}methodDefEntry;

This data structure is used to store information about each of the rows in the

method table. The RVA data field in this data structure stores the RVA of each of the

method present in the executable. The nameIndex field is an index into the “string”

stream that gives the name of the method corresponding to this row in the method table.

The paramIndex field is an index into the parameter table while the sigIndex is an index

into the blob heap, which gives information regarding the signature of this method.

MethodFatHeader
{

Int16 flagsAndSize;//Specify the header type(FAT
or TINY)

Int16 maxStack;//No of stack entries this method
 uses

Int32 codeSize;//(in bytes)
Int32 localVarSigToken;//Index into StandAloneSig

table to get local variable information
}methodFatHeader;

Each method has a method header that gives information about the method to be

executed. Method headers can be classified into Fat and Tiny headers. Tiny headers are

for those methods that have no arguments and have no stack requirements while the fat

header is used for ordinary methods. This information is present in the first two bytes of

the header followed by the maximum stack that this method will consume. Following

maxStack is the codesize information. Next is the local variable token that contains

information like the number of local variables present and the type each local variable

present.

LocalsBlobSignature
{

Byte size;//The no of bytes occupied by this
 stream for the current method

Byte magicNumber;//0x07
Byte localsCount;//The number of local variables.
// followed by the variables themselves

}localsBlobSig;

This data structure gives information regarding the local variables for each of the

methods present in the method table. The first variable named size contains the size of

this structure followed by the magic number (0x07). Next is the no of local variables

present in this method followed by the type of each of the local variables present in the

method

MethodSignature
{

Byte byteCount; //The no of bytes occupied by
this stream for the current method

Byte flags;
Int32 noArgs;//The number of arguments for this

method
Byte returnType;
Int32 argsStartRVA;//The RVA of the argument list

}methodSig;

This data structure gives information regarding the signature of each method

getting executed. The first information is the size of this structure followed by flags. Next

information that is present is the number of arguments of each method and the return type

of each method. Next we have argsStartRVA that is an index that contains the type of

each argument passed to the function.

After initializing the metadata we move onto the core CLR loop.

4.1.3 CORE CLR LOOP

 The function of this module is to fetch the instruction to be executed next, decode

it and interrupt the hardware asking it to execute the instruction. But before this process

the stack must be initialized with the arguments and local variables for this method. A

point that needs to be mentioned here is that we implement the operand stack in hardware

while the control stack is taken care of by the software. The sequence of operations

performed here are

1. The argsStart and localsStart registers are initialized

2. The stack is initialized with arguments to the method followed by the local

variables themselves.

3. The next instruction from the input stream is read and decoded.

4. If the instruction has an immediate operand it is read and both the opcode and

the operand are written to the control and data register of the hardware.

5. If a function call occurs, the values of SP, argsStart and localsStart are stored

in the control stack of the software. The function token, the headers, the data

structures are read and switching is done to Step1

6. If a return is encountered, the locals and arguments of the stack are flushed,

the modified SP is loaded back, the values of argsStart and localsStart of the

callee function are copied back onto the stack.

7. When the function ends, checking is done to ensure that the stack is in the

same state as it was before the function call.

When the program completes execution the values of SP and the control registers

are checked to be -1 and zero respectively. This is confirmed by printing the stack trace

of the output for each instruction and at the end we can confirm that SP has been set back

to -1.

4.2 HARDWARE IMPLEMENTATION

 The hardware implementation consists of the hardware stack, the functional units

and the control unit. The implementation was done in Very High Speed Integrated Circuit

Hardware Description Language (VHDL). This file is then compiled and combined along

with the software module, which is in the form of an Executable and Linking Format

(ELF), and a bitstream is generated. This bitstream is downloaded onto the board and it is

run. The hardware implementation consists of the following blocks.

1. Control Unit

2. Stack Unit

3. Functional Units

The following figure 4.2 explains the hardware system in detail

Figure 4.2 Detailed Hardware Design

4.2.1 CONTROL UNIT

 Control unit consists of the Stack Pointer (SP), ArgsStart Pointer, LocalsStart

Pointer, the base and offset registers and the control and the data register. Each of these is

a 5-bit register. All these registers are written by the FSL interface and read by the stack.

The initialization of these registers is by writing the control register with the opcode

GetLocalArgs meaning that the argsStart and the localsStart are initialized with the

values in the data register in a single clock cycle. This is achieved by encoding the data

register with both these values and while fetching from the data register we decode it as

follows.

when GetLocsArgs=>
localsStart <= op(27 to 31);

 argsStart <= op(19 to 23);
 state <= idle;

When the control register is written by the CLR engine, the control unit decodes

the value. If the opcode written refers local variables or arguments then the base and

offset registers are used to perform random access on the stack. If the opcode received is

ldloc/stloc then the base register is initialized with localsStart. Else if the opcode received

is ldarg/starg then the base register is initialized with argsStart. The following code

snippet explains this.

if (unsigned(FSL_S_Data) >= 37 and unsigned(FSL_S_Data) <=
40) then -- ldargs's

base <= argsStart;
offset <= FSL_S_Data(27 to 31) - 37;
state <= Load_From_Stack1;

elsif (unsigned(FSL_S_Data) = 41) then -- ldarg.s
base <= argsStart;
state <= Read_Operands;

elsif (unsigned(FSL_S_Data) >= 42 and unsigned(FSL_S_Data)
<= 45) then -- stloc's

sp <= sp - 1;
base <= localsStart;
offset <= FSL_S_Data(27 to 31) - 42;
state <= Store_Into_Stack;

elsif (unsigned(FSL_S_Data) = 46) then-- stloc.s
base <= localsStart;
state <= Read_Operands;

4.2.2 STACK UNIT

 The hardware stack has been implemented as an array of 32 registers, each being

a 32-bit register.

constant MAXSTACK:INTEGER := 32; -- the max stack length
type stack_file is array (MAXSTACK-1 downto 0) of
std_logic_vector (0 to 4);
signal stack : stack_file;

This declaration creates a 32 entry 32-bit stack. The hardware also includes two

temporary registers (A and B), which act as source registers for the functional units.

These registers are initialized with the top two data from the stack in each clock cycle. So

when an arithmetic operation is to be performed the top two elements would have been

already available as source registers for the functional unit. This implementation helps in

saving two pops that must occur for each operation to be performed. Since these registers

are updated in each clock cycle any change in the top two elements in the stack will be

automatically reflected in each of the two registers. The following state machine

describes the operation of the stack in detail.

Figure 4.3: State Diagram of the hardware system.

The hardware is initially in the “idle” state. On getting the opcode it moves to the

read opcode state. Based on the opcode read it moves to either the DoBinOps state or

Load Constants state or the Read Operands state or Load from Stack1 state. In the read

operand state it reads the immediate value of an instruction that is fetched by the CLR

and written in the data register. From the read operands stage it moves to either of load

constant or load from stack or store from stack state. There is a temporary stage transfer

from the load from stack1 state to the load from stack2 state before we move back to the

idle state.

 4.2.3 FUNCTIONAL UNITS

The functional units perform basic arithmetic operations and bitwise operations on

the data. The following are the functional units that have been designed.

1. Additions and Subtractions

2. Multiplication

3. All Branch instructions

4. Compare Instructions

5. Bit Manipulation instructions like (AND, OR, XOR, NEGATE, NOT).

All these units take the values of registers A and B as source operand and put the

result back into the stack except for branches that give the result back to the CLR engine.

The result for branch instruction specifies the outcome of the branch comparison, which

is used by the CLR engine to calculate the branch target instruction.

4.3 INTERFACE ACCESS

 Access to the FSL buffer is via the microblaze_bread_datafsl() and

microblaze_bwrite_datafsl() calls. Here bread and bwrite refers to blocking read and

write meaning that the slave waits till the data is available in the FSL buffer and the

master waits till the FSL buffer becomes free. The parameters to this function are the FSL

interface number and the data to be written in the buffer.

4.3.1 FSL WRITE OPERATION

 When the data in FSL_M_Data and control bit in FSL_M_Control are ready to be

pushed into the FIFO, the FSL_M_Write signal is set to ’1’ for one clock cycle. This will

push the Data and Control signals onto the FIFO. If the FIFO is not implemented with

BRAMs the data becomes available to the slave FSL interface as FSL_S_Data and the

control becomes available as FSL_S_Control after the write clock edge. Further, the

FSL_S_Exists signal is set to ’1’ to indicate data exists in the FIFO.

 The following code snippet describes the sequence of operations to be performed

when the push opcode is encountered.

int FSL_Push(int toPush)
{
 int j = 0;
 microblaze_bwrite_datafsl(2,0);//the opcode is

 written in the control register
microblaze_bwrite_datafsl(toPush,0);//the data to be

loaded is written in data register.
microblaze_bread_datafsl(j,1);

 sp ++;//increment stack pointer

 return j;
}

4.3.2 FSL READ OPERATION

 The read side of the FSL bus is controlled by the FSL_S_Read signal. When data

is available in the FSL bus (FSL_S_Exists = ’1’), the data in FSL_S_Data and the control

bit in FSL_S_Control are immediately available to be read by the slave on the FSL bus.

Once the slave completes the read operation, the FSL_S_Read signal has to be set to ’1’

for one clock cycle acknowledging that a Read has successfully been completed by the

slave. After the clock edge where the read takes place, the FSL_S_Data and

FSL_S_Control are updated with new data and FSL_S_Exists and FSL_M_Full are

updated. The next chapter gives the results and performance comparison of the co-

designed strategy and a pure software strategy.

CHAPTER 5

RESULTS

5.1 THE SYSTEM

The system used for testing is a Xilinx Virtex II Pro FPGA Board. This board has

a 300MHz softcore MicroBlaze processor that employs 32-bit big-endian format. The

board has a 32KB on-chip memory and a 256MB off-chip DDR memory. A .NET PE is

given as an input to the CLR engine. After identifying the initial entry point, the CLR

engine works asynchronously with the hardware to execute the PE. Since .NET Virtual

Machine (VM) is a stack-based machine and each instruction is manipulated on stack

alone, the design prints the stack trace of the executable as each instruction is executed.

The Stack trace will contain the current value associated to the Stack Pointer (SP) along

with the instructions it points to. The trace also depicts details such as the Relative

Virtual Address (RVA) of the function invoked, its size, number of arguments in the

method and the starting address of these arguments in the stack. The output can be seen

in the HyperTerminal. Stack-trace as the output is a proof of the fact that the PE got

executed.

5.2 HYPER TERMINAL SETTINGS

The Board is connected through RS232 cable and a JTAG cable. A Hyper

Terminal was opened with the following configuration.

Connect Using: COM1 port
Bits per second: 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

5.3 TEST CASES

 The input to the CLR engine is the executable of the C# code. The input

executable is disassembled to Microsoft Intermediate Language (MSIL) and shown

below.

.method private hidebysig static void Main() cil managed

{
 // Code size: 41 bytes
 .maxstack 2
 .locals ([0] int32 V_0,[1] int32 V_1)
 IL_0000: ldc.i4.s 0x0a//10
 IL_0002: stloc.0
 IL_0003: ldc.i4.s 0x14//20
 IL_0005: stloc.1
 IL_0006: ldloc.0
 IL_0007: ldloc.1
 IL_0008: add
 IL_0009: stloc.0
 IL_000a: ldloc.0
 IL_000b: ldloc.1
 IL_000c: call int32

InsideCSharp.HelloWorldConsoleApp::function(int32,
int32)

IL_0011: stloc.0
 IL_0012: ldloc.0
 IL_0013: ldloc.1
 IL_0014: bge.s IL_001c
 IL_0016: ldloc.0
 IL_0017: ldloc.1
 IL_0018: sub
 IL_0019: stloc.0
 IL_001a: br.s IL_0024
 IL_001c: ldloc.0
 IL_001d: ldloc.1
 IL_001e: blt.s IL_0024
 IL_0020: ldloc.0
 IL_0021: ldc.i4.1
 IL_0022: sub
 IL_0023: stloc.0
 IL_0024: ldloc.0
 IL_0025: ldc.i4.1
 IL_0026: add
 IL_0027: stloc.0
 IL_0028: ret
}//end of method InsideCSharp.HelloWorldConsoleApp::Main

.method public hidebysig static int32
function(int32 a, int32 b) cil managed
 {
 // Code size 8 (0x8)
 .maxstack 2
 .locals init (int32 V_0)
 IL_0000: ldarg.0
 IL_0001: ldarg.1
 IL_0002: sub
 IL_0003: stloc.0
 IL_0004: br.s IL_0006

 IL_0006: ldloc.0
 IL_0007: ret
 } // end of method HelloWorldConsoleApp::function

The C# equivalent to above MSIL code is

namespace InsideCSharp {
 class HelloWorldConsoleApp {
 static void Main() {
 int i=10,j=20;
 i=i+j;
 i = function(i, j);
 if(i<j)
 i=i-j;
 else if(i>=j)
 i=i-1;
 i++;
 }
 public static int function(int a, int b) {
 return a-b;
 }
 }
}

The input case above encompasses all types of instructions that are being

implemented in hardware such as Load constants, Add, Multiply, Subtract, Conditional

and Unconditional Branching, and Functions handling.

Following is the Stack Trace of the above code executed on the Xilinx Virtex II pro board

Figure 5.1 provides the stack trace of the function main (). The initialization of Relative

Virtual Address (RVA), Number of arguments to the method, Starting address of the

arguments and size of the function are depicted in figure 1.

Figure 5.1: Snapshot depicting the initialization of the main method.

Figure 5.2 depicts the trace of call to another function named “function” and the

initialization of variables and operations on them for that function. Figure 5.1 is shown

below

Figure5. 2: Snapshot depicting the call of method function(int,int)

Figure 5.3 depicts the trace of the control getting back to the main function and then a

Branching statement “greater than or equal to” getting executed.

.

Figure 5.3: Snapshot depicting the return of the method function() and handling of

branch condition

Figure 5.4 depicts the execution of an unconditional branch as well as a subtraction and

addition operation

Figure 5.4 Snapshot depicting the execution of unconditional branch instruction

Figure 5.5 depicts the return of the main method and the end of execution of the program

with the stack being reset to the original condition.

Figure 5.5: Snapshot depicting the end of execution of the program.

5.4 PROFILING

The profiled output after porting the Software interpreter on Hardware without

Custom Hardware Support is shown in figure 5.6 and the profiled output after porting the

CLR on Hardware with Custom Hardware support is shown in figure 5.7.

The function main2() does the core job of execution. A comparison of the time

taken by this function with and without Hardware support is done and the overall Speed

Up is calculated. The values for the pure software and co-designed solution in

microseconds are 10467.20 and 4757.72 respectively per function call.

Flat profile:

Each sample counts as 5e-05 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 77.94 4.68 4.68 XUartLite_SendByte
 8.36 5.18 0.50 __modsi3
 4.21 5.44 0.25 _mbtowc_r
 2.78 5.60 0.17 1 167228.34 222208.72 main
 1.38 5.69 0.08 _vfprintf_r
 1.08 5.75 0.07 __sfvwrite
 0.54 5.78 0.03 memmove
 0.36 5.81 0.02 __umoddi3
 0.36 5.83 0.02 outbyte
 0.35 5.85 0.02 memchr
 0.29 5.87 0.02 fflush
 0.28 5.88 0.02 __udivdi3
 0.23 5.90 0.01 1 13573.24 49473.68 executeMethod
 0.23 5.91 0.01 __umodsi3
 0.21 5.92 0.01 427 29.45 54.12 my_f_read
 0.20 5.93 0.01 __udivsi3
 0.19 5.95 0.01 write
 0.18 5.96 0.01 690 16.01 16.01 readByteFromStream
 0.15 5.97 0.01 248 36.59 36.59 printStackTrace
 0.13 5.97 0.01 __mulsi3
 0.12 5.98 0.01 __swrite
 0.10 5.99 0.01 puts
 0.06 5.99 0.00 strlen
 0.04 5.99 0.00 XUartLite_RecvByte
 0.04 5.99 0.00 145 16.72 16.72 pop
 0.03 6.00 0.00 75 21.33 21.33 my_f_seek
 0.02 6.00 0.00 vfprintf
 0.02 6.00 0.00 1 1349.83 2073.68 updateMetadata
 0.02 6.00 0.00 172 6.47 6.47 push
 0.02 6.00 0.00 printf
 0.01 6.00 0.00 32 20.70 36.71 my_f_getc
 0.01 6.00 0.00 12 54.16 54.16 getOffsetForTable
 0.01 6.00 0.00 my_f_eof
 0.00 6.00 0.00 getTos2
 0.00 6.00 0.00 24 10.42 10.42 my_f_tell
 0.00 6.00 0.00 6 41.66 258.14 getMethodFatHeaderFromStream
 0.00 6.00 0.00 __fixdfsi
 0.00 6.00 0.00 __muldi3
 0.00 6.00 0.00 6 25.00 187.36 getLocalsBlobSignatureFromStream
 0.00 6.00 0.00 _malloc_r
 0.00 6.00 0.00 1 112.49 112.49 initStack
 0.00 6.00 0.00 __divsi3
 0.00 6.00 0.00 _puts_r
 0.00 6.00 0.00 1 99.99 10467.20 main2
 0.00 6.01 0.00 _exception_handler

 0.00 6.01 0.00 _printf_r
 0.00 6.01 0.00 6 8.33 333.06 getMethodDefEntryFromStream
 0.00 6.01 0.00 __sinit
 0.00 6.01 0.00 localeconv
 0.00 6.01 0.00 __smakebuf
 0.00 6.01 0.00 _calloc_r
 0.00 6.01 0.00 setlocale
 0.00 6.01 0.00 6 0.00 248.23 getMethodSignature
 0.00 6.01 0.00 1 0.00 49994.71 execute

Figure 5.6: Snapshot of the execution time of Pure Software Solution

Flat profile:

Each sample counts as 5e-05 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 77.94 4.68 4.68 XUartLite_SendByte
 8.36 5.18 0.50 __modsi3
 4.21 5.44 0.25 _mbtowc_r
 2.78 5.60 0.17 1 167228.34 222208.72 main
 1.38 5.69 0.08 _vfprintf_r
 1.08 5.75 0.07 __sfvwrite
 0.54 5.78 0.03 memmove
 0.36 5.81 0.02 __umoddi3
 0.36 5.83 0.02 outbyte
 0.35 5.85 0.02 memchr
 0.29 5.87 0.02 fflush
 0.28 5.88 0.02 __udivdi3
 0.23 5.90 0.01 1 13573.24 49473.68 executeMethod
 0.23 5.91 0.01 __umodsi3
 0.21 5.92 0.01 427 29.45 54.12 my_f_read
 0.20 5.93 0.01 __udivsi3
 0.19 5.95 0.01 write
 0.18 5.96 0.01 690 16.01 16.01 readByteFromStream
 0.15 5.97 0.01 248 36.59 36.59 printStackTrace
 0.13 5.97 0.01 __mulsi3
 0.12 5.98 0.01 __swrite
 0.10 5.99 0.01 puts
 0.06 5.99 0.00 strlen
 0.04 5.99 0.00 XUartLite_RecvByte
 0.04 5.99 0.00 145 16.72 16.72 pop
 0.03 6.00 0.00 75 21.33 21.33 my_f_seek
 0.02 6.00 0.00 vfprintf
 0.02 6.00 0.00 1 1349.83 2073.68 updateMetadata
 0.02 6.00 0.00 172 6.47 6.47 push
 0.02 6.00 0.00 printf
 0.01 6.00 0.00 32 20.70 36.71 my_f_getc
 0.01 6.00 0.00 12 54.16 54.16 getOffsetForTable
 0.01 6.00 0.00 my_f_eof
 0.00 6.00 0.00 getTos2
 0.00 6.00 0.00 24 10.42 10.42 my_f_tell
 0.00 6.00 0.00 6 41.66 258.14 getMethodFatHeaderFromStream
 0.00 6.00 0.00 __fixdfsi
 0.00 6.00 0.00 __muldi3
 0.00 6.00 0.00 6 25.00 187.36 getLocalsBlobSignatureFromStream
 0.00 6.00 0.00 _malloc_r
 0.00 6.00 0.00 1 112.49 112.49 initStack
 0.00 6.00 0.00 __divsi3
 0.00 6.00 0.00 _puts_r
 0.00 6.00 0.00 1 99.99 4757.72 main2
 0.00 6.01 0.00 _exception_handler
 0.00 6.01 0.00 _printf_r
 0.00 6.01 0.00 6 8.33 333.06 getMethodDefEntryFromStream
 0.00 6.01 0.00 __sinit
 0.00 6.01 0.00 localeconv
 0.00 6.01 0.00 __smakebuf

 0.00 6.01 0.00 _calloc_r
 0.00 6.01 0.00 setlocale
 0.00 6.01 0.00 6 0.00 248.23 getMethodSignature
 0.00 6.01 0.00 1 0.00 49994.71 execute

Figure 5.7: Snapshot of the execution time of Co-designed Solution

A flat profiling is done as explained with and without the hardware

Implementation and the results are tabulated. These are shown in figure 5.8.

Speed Up Factor = Execution time Pure Software / Execution Time Co-designed

Program
Software

(microseconds)
Hardware

(microseconds)
SpeedUp
acheived

Comment

P1 38012.12 22360.07 1.7 Load args and load local vars intensive

P2 18032.21 7360.08 2.45 Load constants and arith operations intensive

P3 7836.23 4124.33 1.9 A simple function call

P4 10467.20 4757.72 2.2 Binary and unary operations intensive

P5 1043.10 869.16 1.2 Hello world program

Figure 5.8: Profiling results

From the above figures, the average speed up factor is found to be 1.89. Thus it can

be concluded that the performance of a co-designed .NET processor is better than a pure

software solution. This vindicates our aim that a hardware implementation is better than a

pure software approach.

CHAPTER 6

CONCLUSION AND FUTURE WORK

Although technologies like Java and .NET have become predominant day by day

due to the increase in demand for homogeneous computing, their performance, due to

interpretation, becomes inferior. It, therefore, becomes imperative to improve the

performance. The .NET technology is a more desirable solution than Java because of its

language interoperability. Use of FPGA reduces the design costs since they are cheaper

than ASICs in addition to providing reconfigurablity. This work concerns with improving

the performance of .NET systems and the results show that a hardware implementation

on an FPGA, as had been discussed in this thesis, indeed accelerates those programs that

are intended to run on the .NET framework.

Future enhancements can be done in 4 stages to make the existing design perform

better. Firstly object modeling instructions as specified in the .NET specifications [10]

can be implemented in the software. This can be further extended so that even these

object modeling instructions can be implemented in hardware. In this case the subset of

object modeling instructions must be chosen carefully such that it doesn’t produce too

complex a hardware that may become a bottleneck in itself. The design can then be

extended to perform better for specific embedded systems by optimizing specific features

of the design such as the stack cache and extending the functional units to perform a

extended set of operations specific to an embedded system. Finally, to make the system

work consistently, a spill-fill handler must be added to handle stack overflow conditions.

CHAPTER 7

REFERENCES

 [1] Erik Meijer and Jim Miller, ‘Technical Overview of the Common Language

Runtime’ Microsoft, 2001

 [2] An introduction to the Pico Java processor - Available at :

http://www.pages.drexel.edu/~ooo22/KImages/picoRep.htm, 2002.

 [3] Java Processors – available at

www.elecdesign.com/Articles/ArticleID/3500/3500.html

 [4] L.V. Nagendra Kumar, International Institute of Information Technology,

Gachibowli, Hyderabad, India, ‘JVM Implementation in FPGAs’, B.Tech final year

Project report, 2002.

[5] K John Gough, ‘Parameter Passing for the Java Virtual Machine’ Australian

Computer Science Conference ACSC2000, Canberra, February 2000, IEEE Press.

[6] K John Gough and Diane Corney, ‘Evaluating the Java Virtual Machine as a target for

Languages Other than Java’ Joint Modula Languages Conference JMLC2000, Zurich,

September 2000

 [7] Hejun Ma, Ken Kent, David Luke, ‘An Implementation of the Hardware Partition in

a Software/Hardware Co-Designed Java Virtual Machine’, In the proceedings of IEEE on

May 2004,Volume 4, ISSN:0840-7789 ISBN:0-7803-8253-6.

[8]The following article from the Intel website was referred.

“Itanium® Processor Family Performance Advantages: Register Stack Architecture”, By

Scott Townsend,

 http://www.intel.com/cd/ids/developer/asmo-na/eng/affiliate/hp/20314.htm

[9] Plataforma.NET-available at ‘http://people.ac.upc.edu/enric/PFC/Plataforma.NET/

p.net.html’, 2002 Topics Referred in this URL - Objectives and Future Projects.

[10] ECMA Draft (ECMA/TC39TG3/2000/3)- Part 3 IL Instruction Set, March 2000.

[11] K John Gough, ‘Stacking them up: a Comparison of Virtual Machines’, In the

proceedings ACSAC-2001.

[12] www.xilinx.com/xup/mb_ref_guide.pdf, Xilinx Inc

[13]ECMA Draft (ECMA/TC39TG3/2000/3)- Part 3 IL Instruction Set, March 2000

http://www.ecma-international.org/publications/standards/Ecma-335.htm

[14]“Metadata Tables”- Vijay Mukhi, BPB Publications, ISBN 81-7656-605-5, 2004

http://www.vijaymukhi.com/documents/books/metadata/contents.htm

[15] Java Virtual Machine – available at http://java.sun.com

[16] Embedded System Tools Reference Manual, Embedded Development Kit EDK

(8.1i), 2005.http://www.xilinx.com/ise/embedded/est_rm.pdf

[17] Ryan Rakvic, Ed Grochowski, Bryan Black, Murali Annavaram, Trung Diep, and

John P. Shen. Performance Advantage of the Register Stack in Intel® Itanium™

Processors, Microprocessor Research, Intel Labs (MRL),2002.

A. APPENDIX

A.1: THE XILINX EMBEDDED DEVELOPMENT KIT

EDK is a series of software tools for designing embedded processor systems on

programmable logic, and supports the IBM PowerPC™ hard processor core and the

Xilinx® MicroBlaze™ soft processor core. Platform Studio™ is the graphical user

interface technology that integrates all of the processes from design entry to design debug

and verification.

The Embedded Development Kit is distributed as a single media installable CD image.

The components of the Xilinx® EDK are:

• Hardware IP for the Xilinx embedded processors and its peripherals

• Drivers, Libraries and a MicroKernel for Embedded Software Development

• Platform Studio tools

• Software Development Kit (Eclipse Based IDE)

• GNU Compiler and Debugger for C development for MicroBlaze™ and PowerPC™

• Documentation

• Sample projects

The version used for the project is EDK 7.1.

A.2: THE XILINX PLATFORM STUDIO (XPS)

XPS is an integrated design environment (IDE) used to develop EDK-based system

designs. To generate a simple hardware system for EDK-based designs using Xilinx®

EDK 7.1 and Xilinx® ISE™ 7.1i EDK hardware involves assembling a system that

contains a processor along with buses and peripherals, generating an HDL netlist, and

implementing the design using ISE implementation tools to generate a bitstream.

A snapshot of XPS is shown if in Figure A1.

Figure A1: XPS in action

DESIGN FLOW IN XPS

The steps involved in creating a hardware system for EDK using XPS are as follows:

1. Create a New XPS Project

2. Select a Target Board

3. Select the Processor to be Used

4. Configure the Processor

5. Configure IO Interfaces

6. Specify Internal Peripheral Settings

7. Specify Software Configuration

8. View System Summary and Generate

9. View Peripherals and Bus Settings

10. Generate Bitstream

11. Download Bitstream and Execute

Figure A2: Design Flow in XPS

A.3: XILINX MICROPROCESSOR DEBUGGER (XMD)

The Xilinx® Microprocessor Debugger (XMD) is a tool that facilitates debugging

programs and verifying systems using the PowerPC™ 405GP (Virtex™-II Pro &

Virtex™-4) or MicroBlaze™ microprocessors. You can use it to debug programs running

on a hardware board, Cycle-accurate Instruction Set Simulator (ISS), or MicroBlaze

Cycle-accurate Virtual Platform (VP) system. XMD provides a Tool Command

Language (Tcl) interface. This interface can be used for command line control and

debugging of the target as well as for running complex verification test scripts to test a

complete system.

Figure A3: XMD Command Shell

XMD supports GNU Debugger (GDB) Remote TCP protocol to control

debugging of a target. Some graphical debuggers use this interface for debugging,

including PowerPC and MicroBlaze GDB (powerpc-eabi-gdb and mb-gdb) and Platform

Studio™ SDK (Eclipse based Software IDE). In either case, the debugger connects to

XMD running on the same computer or on a remote computer on the Network. XMD

reads XMP, MHS, and MSS system files to better understand the hardware system on

which the program is debugged. The information is used to perform memory range tests,

determine MicroBlaze to Microprocessor Debug Module (MDM) connectivity for faster

download speeds and other system actions. Figure A4 describes the possible

configurations of XMD.

Figure A4: XMD Targets

A.4: DOCUMENTS THAT WERE USED AS A REFERENCE IN THE PROJECT

A.4.1: THE PLATFORM STUDIO USER GUIDE

EDK User Guide is a good place for first time users of EDK to understand the

various design/debugging flows. Details about this document:

� Describes basic example designs for MicroBlaze and PowerPC. The doc covers

both designing Hardware system as well as the Software Design.

� Usage of Xilinx MicroKernel and its components such as LibXilNet, LibXilMFS

is discussed in the document.

� Using the Xilinx Microprocessor Debugger (XMD) for downloading program,

profiling and creation of SystemAce files is explained with examples.

� Simulating a design using EDK tools and IP is discussed in the Simulation

chapter

� EDK Software design flow is described in detail.

A.4.2: MICROBLAZE REFERENCE GUIDE

This document provides information about the 32-bit soft processor, MicroBlaze,

included in the Embedded Processor Development Kit (EDK). The document is meant as

a guide to the MicroBlaze hardware and software architecture.

This manual discusses the following topics specific to MicroBlaze soft processor:

� Core Architecture

� Bus Interfaces and Endianness

� Application Binary Interface

� Instruction Set Architecture

A.4.3: TOOLS AND IP REFERENCE GUIDES

Reference guides include detailed documents which explain

� Tool options and capabilities.

� Library and driver API and usage.

� Processor IP Datasheets

� User Core Templates usage and example systems.

A.4.4: EMBEDDED SYSTEMS TOOLS GUIDE

� Describes the Embedded Software Tools (EST) flow.

� Describes all the tools provided with EDK such as Library Generator, Platform

Generator, GNU compiler framework, GNU debugger, Xilinx MicroProcessor

Debugger, Simulation Generator and the Xilinx Platform Studio.

A.4.5: PLATFORM SPECIFICATION FORMAT

� Describes the Microprocessor Hardware Specification (MHS) format and the

Platform Generator infrastructure for embedded processor peripheral definitions:

the Microprocessor Peripheral Definition (MPD) format.

� Describes the MicroProcessor Driver Definition (MDD), MicroProcessor Library

Defintion (MLD) and Microprocessor Software Specification (MSS) format.

� OS and Libraries Reference Guide

� Describes the software libraries available for Xilinx Embedded Processors. The

libraries include the Xilinx C library (libXil), the math library (libm), the Xilinx

file support functions (libXil File), the Xilinx memory mapped file system (libXil

MFS), the Xilinx networking support (libXil Net), the Xilinx device drivers

(libXil Driver) and the Xilinx Standalone Board Support Package (BSP).

A.4.6: DRIVER REFERENCE GUIDE

� The libraries reference guide describes the overall philosophy and how the drivers

can be hooked up in EDK designs. The drivers reference guide describes each

driver delivered by the Embedded Development Kit in complete details.

A.4.7: PROCESSOR IP REFERENCE GUIDE

� Describes the usage of On-chip Peripheral Bus (OPB) and the IBM Processor

Local Bus (PLB) is used in Xilinx FPGAs.

� Provides the design specification for all the processor IP, provided with the EDK.

A.5 INTERNALS OF THE .NET ARCHITECTURE

INTRODUCTION

The Common Language Environment (CLR) is the run-time environment of the

.NET Common Language Infrastructure (CLI). It manages the execution of code and

provides services that make the development process easier. The intermediate code form

of the .NET system is called Common Intermediate Language (CIL) or the Microsoft

Intermediate language (MSIL). As other virtual machines, the CLR too is stack-based

machine.

THE ARCHITECTURE

The .NET CLR is a stack based machine. All operations are done on the stack.

The local variables, the arguments that are passed back and forth between functions, the

temporary evaluations etc. all reside on the stack. The .NET CLR is a complex machine

and it provides a lot of high-level abstractions as primitives. For example, there is support

of events, classes, arrays, delegates etc. even at the MSIL level. The CLR manages to

provide such good features, thanks to the heavy amount of metadata that gets packed with

a .NET executable.

THE COMPILATION PROCESS

.NET boasts of the feature of language interoperability. This is accomplished by

having a VM kind of a setup. All the HLL programs get translated to an intermediate

form called a .NET assembly. An assembly can either be a DLL or an executable. The

executable assemblies are Portable Executable (PE) files. The MSIL instructions are

encoded in these assemblies, which are then interpreted by the CLR. A heavy amount of

metadata gets packed with an assembly, which is made use of by the CLR during the

interpretation stage. The PE and the metadata play a pivotal role in the .NET framework

and are explained in [1]. We now proceed to give a general overview of the PE format.

The Win32 PE

The file format for .NET executables is a strict extension of the current Portable

Executable (PE) File Format. This extended PE format enables the operating system to

recognize runtime images, accommodates code emitted as CIL or native code, and

accommodates runtime metadata as an integral part of the emitted code. The PE format

would require pages of explanation. Loads of documentation is already available. We

describe here only those parts of the PE file that are relevant to the work.

The figure below provides a high-level view of the CLI file format. All runtime

images contain the following:

Figure A5: CLI File Format

• PE headers, with specific guidelines on how field values should be set in a runtime file.

• A CLI header that contains all of the runtime specific data entries.

• The sections that contain the actual data as described by the headers, including

imports/exports, data, and code.

The PE optional header, which forms a part of the PE header, contains constructs

called directories. The optional header data directories give the address and size of

several tables that appear in the sections of the PE file. Each data directory entry contains

the Relative Virtual Address (the offset of a data item from base address of the file) and

Size of the structure it describes, in that order. The CLI header is found using CLI Header

directory entry in the PE header. The CLI header in turn contains the address and sizes of

the runtime data i.e. for metadata and for CIL in the rest of the image.

METADATA – THE HEART OF A .NET ASSEMBLY

Many of .NET’s high level and attractive features are made possible only because

of the massive magnitude of the metadata that gets packed with a .NET assembly. The

metadata is organised inside a .NET assembly in two forms: tables and heaps.

Heaps

There are five possible types of heaps:

� String: Metadata preserves name strings, as created by a compiler or code generator,

unchanged. These strings are stored in this table.

� Blob: Contains indices for various table entries

� UserString: Contains the Unicode string constants used in the source file.

� GUID: Globally Unique IDentifier, a 16-byte long number typically displayed using

its hexadecimal encoding. While the other three heaps are byte arrays, this heap is an

array of 16-bit entries.

� #~ (The Tilde stream): points to the physical representation of a set of tables.

Tables

Each entry in each column of each table is either a constant or an index. Constants

are either literal values or bitmasks. Most bitmasks are 2 bytes wide but there are a few

that are 4 bytes. Each index is either 2 or 4 bytes wide. The index points into the same or

another table, or into one of the four heaps. The size of each index column in a table is

only made 4 bytes if it needs to be for that particular module. So, if a particular column

indexes a table, or tables, whose highest row number fits in a 2-byte value, the indexer

column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows,

an indexer of that table will be 4 bytes wide. Indexes to tables begin at 1.

